ارزیابی تغییرات شوری خاک در اراضی شهرستان بناب با استفاده از داده‌های ماهواره‌ای و زمینی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 'گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 گروه سنجش از دور، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی، اردبیل، ایران

3 گروه آموزشی علوم خاک و مهندسی خاک، دانشگاه محقق اردبیلی، اردبیل، ایران

4 دانشکده کشاورزی، گروه علوم و مهندسی خاک، دانشگاه مراغه، مراغه، ایران

چکیده

پیشینه و هدف: پیشگیری از شور شدن خاک و مدیریت آبیاری کشاورزی بستگی زیادی به برآورد دقیق شوری خاک دارد. بنابراین، استفاده از روش‌های سنتی (تحلیل آزمایشگاهی، بررسی‌های میدانی) برای پایش آن ناکافی و نامناسب است، زیرا با پویایی تکامل این پدیده هم‌خوانی ندارد و هزینه‌های بالایی را نیز به همراه دارد. در ضمن روش‌های مورد استفاده در ارزیابی تغییرات مکانی، باید قدرت پاسخ‌گویی به پرسش‌ها و تحولات جدیدی که در این زمینه رخ می‌دهد‌ را داشته باشد. به‌عنوان یک راهکار، تصاویر ماهواره‌ای می‌توانند به‌عنوان ابزاری قدرتمند برای نظارت مستمر استفاده شوند؛ زیرا حساسیت سیگنال‌های الکترومغناطیسی به پارامترهای خاک در اولین لایه سطحی که مستقیما با محتوای‌نمک خاک مرتبط است، وجود دارد. در مورد شوری خاک مطالعات بسیاری صورت گرفته، که براساس نمونه‌های زمینی و تصاویر ماهواره‌ای مورد استفاده نتایج متفاوتی به ‌دست آمده است، بنابراین به‌کارگیری داده‌ها و تکنیک‌هایی که بتواند ضمن حذف خطاهای تصویر از دقت و صحت کافی برخوردار باشد، مورد توجه نقشه‌برداران خاک است. با توجه به اهمیت این موضوع، هدف از این پژوهش، ارزیابی و بررسی ارتباط بین داده‌های زمینی با شاخص‌های طیفی استخراج شده از تصاویر ماهواره‌ای لندست در شهرستان بناب است.
مواد و روش‌ها: در این پژوهش، سه نوع داده مورد استفاده قرار گرفت: تصاویر ماهواره‌ای لندست 7 و 8 با فاصله زمانی 15 ساله، تصویر DEM بعنوان داده کمکی در عملیات طبقه‌بندی ، هم‌چنین نمونه‌های شوری خاک که از 74 نقطه مختلف در فواصل مکانی 500 متری جمع‌آوری شده‌اند. این نمونه‌ها از یک منطقه به مساحت 40 کیلومتر مربع در پاییز 2014 برداشت شده‌اند. جهت بررسی معناداری نمونه‌های زمینی با تصاویر ماهواره‌ای، از 12 شاخص طیفی سنجش از دور، استفاده شده است، پس از پیش‌پردازش‌های لازم (اتمسفری، رادیومتری و اعمال فیلتر 3*3)، مقادیر متناظر به مقادیر EC استخراج شدند. تصاویر قبل و بعد از اعمال فیلتر از طریق روش‌های رگرسیون مورد بررسی قرار گرفتند. در ادامه، از روش رگرسیون گام‌به‌گام برای بررسی ارتباط بین متغیرهای مستقل و متغیر وابسته استفاده شد. همه شاخص‌های طیفی به عنوان متغیرهای مستقل وارد مدل شدند، نتایج نشان داد که از بین این شاخص‌ها، NDWI و NDSI دارای بیشترین ارتباط معنادار با نمونه‌های زمینی هستند. برای تهیه نقشه‌ی تغییرات شوری خاک برای سال‌های 1999 تا 2014، از نمونه‌های زمینی و شاخص NDSI استفاده شد. همچنین، با استفاده از داده‌های DEM، داده‌های زمینی، و تصویر Landsat 8، نقشه طبقه‌بندی حداکثر احتمال برای سال 2014 تهیه شد.
نتایج و بحث: تحلیل رگرسیون بین نمونه‌های EC و شاخص‌های طیفی نشان داد که شاخص‌های NDVI (0/45)، NDWI (0/37)، SI-T (0/43) و NDSI (0/41)، نسبت به دیگر شاخص‌ها دارای ارتباط معنادارتری با شوری خاک هستند. استفاده از فیلتر، ضریب تبیین این ارتباطات را بهبود بخشیده است
. به علاوه، شاخص‌های VSSI و BI کمترین ارتباط معنایی را با نمونه‌های زمینی نشان دادند. نمودار تغییرات شوری خاک نشان می‌دهد که در منطقه‌ای با مساحت حدود ۴۰ کیلومتر مربع، بیشترین تغییرات شوری خاک با مقدار ۳۵.۳ کیلومتر مربع مربوط به تغییرات از اراضی شور به فوق‌العاده شور رخ داده است. نقشه طبقه‌بندی حداکثر احتمال برای سال ۲۰۱۴ نشان می‌دهد که با خشک شدن دریاچه ارومیه، روند افزایش شوری در منطقه تشدید شده است.
نتیجه‌گیری: نتایج این پژوهش نشان داد، همه شاخص‌های استخراج شده دارای ارتباط معنایی با داده‌های شوری خاک هستند، و از بین شاخص‌های استخراج شده، شاخص‌های (NDVI، NDWI، SI-T، NDSI) دارای ارتباط معنایی بیش‌تری نسبت‌ به شاخص‌های دیگر بودند. هم‌چنین نتایج استفاده از فیلتر نشان داد، اعمال فیلتر بر روی شاخص می‌تواند نتایج پژوهش را بهبود ببخشد. این مطالعه بر استفاده از تصاویر ماهواره‌ای برای پایش مداوم شوری خاک به دلیل حساسیت و سازگاری آن، بهتر از روش‌های سنتی تاکید دارد. همبستگی های قابل توجه بین داده‌های زمینی و شاخص‌های طیفی مانند NDVI، NDWI، SI-T و NDSI بر اثربخشی آنها در تجزیه و تحلیل دینامیک شوری خاک تأکید می‌کند. این یافته‌ها راهنمایی‌های ارزشمندی را برای تحقیقات آتی فراهم می‌کنند و بر استفاده از تکنیک‌های فیلتر برای بهبود دقت در ارزیابی تغییرات مکانی در شوری خاک تاکید می‌کند. اطلاعات این پژوهش می‌تواند به‌عنوان راهنما مفیدی برای انتخاب داده‌ها و تصاویر ماهواره‌ای دیگر در مطالعات مشابه مربوط به تغییرات مکانی شوری خاک در‌نظرگرفته شود.
 

کلیدواژه‌ها


عنوان مقاله [English]

Assessment of Soil Salinity Variations in the Bonab Area Using Ground-Based and Remote Sensing-Derived Data

نویسندگان [English]

  • Bita Heydarzadeh 1
  • Hassan Khavarian Nehzak 2
  • Ayda Abbasi -Kalo 3
  • Nikou Hamzehpour 4
1 Department of Remote Sensing and Geographic Information System, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
2 Department of Remote Sensing and Geographic Information System, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
3 Department of Soil Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
4 Department of Soil Sciences, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
چکیده [English]

Background and objective: Preventing soil salinization and managing agricultural irrigation heavily depend on accurate soil salinity estimation. Soil salinity represents a prevalent form of land degradation, characterized by its temporal and spatial evolution. Traditional methods like laboratory analysis and field surveys are inadequate for monitoring soil salinity due to their inability to keep pace with the rapid changes of this phenomenon and their associated high costs. Additionally, the methods used in assessing spatial changes should have the capability to respond to new questions and developments occurring in this field. To address this challenge, satellite imagery emerges as a valuable tool for continuous monitoring, given the sensitivity of electromagnetic signals to soil parameters, particularly in the surface layer directly linked to soil salt content. Numerous studies have been conducted on soil salinity, yielding different results based on ground samples and satellite imagery. Therefore, the attention of soil mappers is drawn to employing data and techniques capable of ensuring sufficient accuracy and reliability by eliminating image errors. Given the significance of this issue, the objective of this study is the evaluating and establishing a relationship between ground data and spectral indices extracted from Landsat satellite images in Bonab County.
Material and methods:
In this study, three types of data were used: Landsat 7 and 8 satellite images with a 15-year interval, DEM imagery as auxiliary data for classification operations, and soil salinity samples collected from 74 different points at 500-meter intervals. These samples were collected from a 40-square-kilometer area in the fall of 2014. To assess the significance of ground samples with satellite images, 12 remote sensing spectral indices were utilized, and after necessary preprocessing (atmospheric, radiometric corrections, and applying a 3*3 filter), corresponding values to EC were extracted. Pre- and post-filter images were examined using regression methods. Subsequently, stepwise regression was employed to examine the relationship between independent variables and the dependent variable. All spectral indices were included as independent variables in the model. The results indicated that among these indices, NDWI and NDSI had the most significant correlation with ground samples. To create the soil salinity change map for the years 1999 to 2014, ground samples and the NDSI index were used. Additionally, using DEM data, ground data, and Landsat 8 imagery, a maximum likelihood classification map for 2014 was generated.
Results and discussion: Regression analysis between EC samples and spectral indices revealed that NDVI (0.45), NDWI (0.37), SI-T (0.43), and NDSI (0.41) had a more significant correlation with soil salinity compared to other indices. The use of filters improved the coefficient of determination for these correlations. Additionally, VSSI and BI indices showed the least significant correlation with ground samples. The soil salinity change chart indicates that in an area of approximately 40 square kilometers, the most significant soil salinity changes, covering 35.3 square kilometers, occurred from saline to highly saline land. The maximum likelihood classification map for 2014 shows that with the drying of Lake Urmia, the trend of increasing salinity in the region has intensified.
Conclusion: In this study, Landsat 7 (1999) and Landsat 8 (2014) imagery was utilized to assess the significant relationship and produce a soil salinity map between ground data and remote sensing spectral indices in Bonab County. The results demonstrated that all extracted indices had significant correlations with soil salinity data, with NDVI, NDWI, SI-T, and NDSI showing stronger correlations compared to other indices. Furthermore, the results of filtering showed that applying a filter to the index could improve research outcomes. The study emphasizes using satellite imagery for ongoing soil salinity monitoring due to its sensitivity and adaptability, outperforming traditional methods. Significant correlations between ground data and spectral indices like NDVI, NDWI, SI-T, and NDSI underscore their effectiveness in analyzing soil salinity dynamics. These findings provide valuable guidance for future research, advocating for filtering techniques to improve accuracy in assessing spatial changes in soil salinity. The findings of this study can serve as a useful guide for selecting data and satellite images in similar studies related to spatial changes in soil salinity.
 

کلیدواژه‌ها [English]

  • Spectral indexes
  • Regression
  • Remote Sensing
  • Stepwise
  • Bonab
  1. Abdolalizadeh, Z., Ghorbani, A., Mostafazadeh, R. & Moameri, M., 2020, Rangeland Canopy Cover Estimation Using Landsat OLI Data and Vegetation Indices in Sabalan Rangelands, Iran, Arabian Journal of Geosciences, 13, PP. 1-13, DOI: 10.1007/s12517-020-5150-1.

     

     

    ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ

    1. 1. Feizizadeh
    2. Alqasemi
    3. Abdolalizadeh

     

     

    Abuzaid, A.S., El-Komy, M.S., Shokr, M.S., El Baroudy, A.A., Mohamed, E.S., Rebouh, N.Y. & Abdel-Hai, M.S., 2023, Predicting Dynamics of Soil Salinity and Sodicity Using Remote Sensing Techniques: A Landscape-Scale Assessment in the Northeastern Egypt, Sustainability, 15(12), PP. 9440, DOI: 10.3390/su15129440.

    Aghaei, M., Khavarian, H. & Mostafazadeh, R., 2019, Prediction of Land Use Changes Using the CA-Markov and LCM Models in the Kozehtopraghi Watershed in the Province of Ardabil, Watershed Management Research, 33(3), PP. 91-107, DOI: 10.22092/wmej.128009.1267.

    Akramhanov, A. & Martius, C., 2006, The Spatial Distribution of Soil Salinity: Detection and Prediction, In: The 18th World Congress of Soil Science.

    Alavipanah, S.K., 2016, Application of Remote Sensing in Earth Sciences (Soil Science), Tehran: Tehran University Press, P. 311.

    Allbed, A. & Kumar, L., 2013, Soil Salinity Mapping and Monitoring in Arid and Semi-Arid Regions Using Remote Sensing Technology: A Review, Advances in Remote Sensing, 2, PP. 373-385, DOI: 10.4236/ars.2013.24040.

    Allbed, A., Kumar, L. & Sinha, P., 2014, Mapping and Modelling Spatial Variation in Soil Salinity in the Al Hassa Oasis Based on Remote Sensing Indicators and Regression Techniques, Remote Sensing, 6(2), PP. 1137-1157, DOI: 10.3390/rs6021137.

    Alqasemi, A.S., Ibrahim, M., Al-Quraishi, A.M.F., Saibi, H., Al-Fugara, A.K. & Kaplan, G., 2021, Detection and Modeling of Soil Salinity Variations in Arid Lands Using Remote Sensing Data, Open Geosciences, 13(1), PP. 443-453, DOI: 10.1515/geo-2020-0244.

    Avdan, U., Kaplan, G., Matcı, D.K., Avdan, Z.Y., Erdem, F., Mızık, E.T. & Demirtaş, İ., 2022, Soil Salinity Prediction Models Constructed by Different Remote Sensors, Physics and Chemistry of the Earth, Parts A/B/C, 128, P. 103230, DOI: 10.1016/j.pce.2022.103230.

    Azhirabi, R., Kamkar, B. & Abdi, O., 2015, Comparison of Different Indices Adopted from Landsat Images to Map Soil Salinity in the Army Field of Gorgan, Soil Management and Sustainable Production Journal, 5(1), PP. 173-186, DOI: 10.22069/ejsms.2024.22437.2149.

    Bannari, A., Guedon, A.M., El-Harti, A., Cherkaoui, F.Z. & El-Ghmari, A., 2008, Characterization of Slightly and Moderately Saline and Sodic Soils in Irrigated Agricultural Land Using Simulated Data of Advanced Land Imaging (EO-1) Sensor, Communications in Soil Science and Plant Analysis, 39(19-20), PP. 2795-2811, DOI: 10.1080/ 00103620802432717.

    Bolstad, P. & Lillesand, T.M., 1991, Rapid Maximum Likelihood Classification, Photogrammetric Engineering and Remote Sensing, 57(1), PP. 67-74.

    Dehni, A. & Lounis, M., 2012, Remote Sensing Techniques for Salt Affected Soil Mapping: Application to the Oran Region of Algeria, Procedia Engineering, 33, PP. 188-198, DOI: 10.1016/j.proeng. 2012.01.1193.

    Delavar, M.A., Naderi, A., Ghorbani, Y., Mehrpouyan, A. & Bakhshi, A., 2020, Soil Salinity Mapping by Remote Sensing South of Urmia Lake, Iran, Geoderma Regional, 22, PP. e00317, DOI: 10.1016/j.geodrs.2020.e00317.

    Douaoui, A.E.K., Nicolas, H. & Walter, C., 2006, Detecting Salinity Hazards within a Semiarid Context by Means of Combining Soil and Remote-Sensing Data, Geoderma, 134(1-2), PP. 217-230, DOI: 10.1016/j.geoderma.2005.10.009.

    El-Battay, A., Bannari, A., Hameid, N. & Abahussain, A., 2017, Comparative Study among Different Semi-Empirical Models for Soil Salinity Prediction in an Arid Environment Using OLI Landsat-8 Data, Advances in Remote Sensing, 6, PP. 23-39, DOI: 10.4236/ars.2017.61002.

    Emami, M., Khormali, F., Pahlavan-Rad, M.R. & Ebrahimi, S., 2024, Digital Modeling of Surface and Subsurface Soil Salinity in Golestan Province, Iran, Geoderma Regional, 37, P. e00800, DOI: 10.1016/ j.geodrs.2024.e00800.

    Farshad, A. & Farzaneh, A., 2016, Application of Remote Sensing Data and Geographic Information Systems in Sustainable Agricultural Development and Conservation of Natural Resources and Environment in Iran, Agricultural Extension and Education Publications, 1st ed, P. 272.

    Feizizadeh, B., Omarzadeh, D., Alajujeh, K.M., Blaschke, T. & Makki, M., 2022, Impacts of the Urmia Lake Drought on Soil Salinity and Degradation Risk: An Integrated Geoinformatics Analysis and Monitoring Approach, Remote Sensing, 14(14), P. 3407, DOI: 10.3390/rs14143407.

    Ghale, Y.A.G., Baykara, M. & Unal, A., 2019, Investigating the Interaction between Agricultural Lands and Urmia Lake Ecosystem Using Remote Sensing Techniques and Hydro-Climatic Data Analysis, Agricultural Water Management, 221, PP. 566-579, DOI, 10.1016/j.agwat. 2019.05.028.

    Gorji, T., Sertel, E. & Tanik, A., 2017, Monitoring Soil Salinity via Remote Sensing Technology under Data Scarce Conditions: A Case Study from Turkey, Ecological Indicators, 74, PP. 384-391, DOI: 10.1016/j.ecolind.2016.11.043.

    Gorji, T., Yildirim, A., Hamzehpour, N., Tanik, A. & Sertel, E., 2020, Soil Salinity Analysis of Urmia Lake Basin Using Landsat-8 OLI and Sentinel-2A Based Spectral Indices and Electrical Conductivity Measurements, Ecological Indicators, 112, P. 106173, DOI: 10.1016/ j.ecolind.2020.106173.

    Hamzehpour, N. & Bogaert, P., 2017, Improved Spatiotemporal Monitoring of Soil Salinity Using Filtered Kriging with Measurement Errors: An Application to the West Urmia Lake, Iran, Geoderma, 295, PP. 22-33, DOI: 10.1016/j.geoderma. 2017.02.004.

    Hamzehpour, N. & Rahmati, M., 2016, Investigation of Soil Salinity to Distinguish Boundary Line between Saline and Agricultural Lands in Bonab Plain, Southeast Urmia Lake, Iran, Journal of Applied Sciences and Environmental Management, 20(4), PP. 1037-1042, DOI: 10.4314/jasem.v20i4.16.

    Jafari, M. & Rostampour, M., 2019, Soil and Plant Relationships: Environmental Stresses, Seeds, and Seedlings, Tehran: Tehran University Press, P. 95.

    Jiang, H. & Shu, H., 2019, Optical Remote-Sensing Data Based Research on Detecting Soil Salinity at Different Depth in an Arid-Area Oasis, Xinjiang, China, Earth Science Informatics, 12, PP. 43-56, DOI: 10.1007/s12145-018-0358-2.

    Khan, N.M. & Sato, Y., 2001, Monitoring Hydro-Salinity Status and Its Impact in Irrigated Semi-Arid Areas Using IRS-1B LISS-II Data, Asian Journal of Geoinformatics, 1(3), PP. 63-73.

    Khan, N.M., Rastoskuev, V.V., Sato, Y. & Shiozawa, S., 2005, Assessment of Hydrosaline Land Degradation by Using a Simple Approach of Remote Sensing Indicators, Agricultural Water Management, 77(1-3), PP. 96-109, DOI: 10.1016/ j.agwat.2004.09.038.

    Kılıc, O.M., Budak, M., Gunal, E., Acır, N., Halbac-Cotoara-Zamfir, R., Alfarraj, S. & Ansari, M.J., 2022, Soil Salinity Assessment of a Natural Pasture Using Remote Sensing Techniques in Central Anatolia, Turkey, Plos One, 17(4), PP. e0266915, DOI: 10.1371/journal.pone.0266915.

    Lhissou, R., El Harti, A. & Chokmani, K., 2014, Mapping Soil Salinity in Irrigated Land Using Optical Remote Sensing Data, Eurasian Journal of Soil Science, 3(2), PP. 82-88, DOI: 10.18393/ejss.84540.

    Lhissou, R., El Harti, A., Maimouni, S. & Adiri, Z., 2020, Assessment of the Image-Based Atmospheric Correction of Multispectral Satellite Images for Geological Mapping in Arid and Semi-Arid Regions, Remote Sensing Applications: Society and Environment, 20, P. 100420, DOI: 10.1016/ j.rsase.2020.100420.

    Li, H.Y., Marchant, B.P. & Webster, R., 2016, Modelling the Electrical Conductivity of Soil in the Yangtze Delta in Three Dimensions, Geoderma, 269, PP. 119-125, DOI: 10.1016/j.geoderma.2016.01.028.

    Mahdavi, M., 2011, Applied Hydrology, Vol. 2, Tehran: Tehran University Press, P. 427.

    Maleki, M. & Madadi, A., 2015, Investigation of Annual Runoff with Experimental Methods in Ardabil Watershed (Khalkhal City), The 5th Conference of Rain Catchment Systems, Gilan-Rasht, March 4th and 5th, 2015.

    McFeeters, S.K., 1996, The use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features, International Journal of Remote Sensing, 17(7), PP. 1425-1432, DOI: 10.1080/01431169608948714.

    Naseri, N. & Mostafazadeh, R., 2023, Spatial Relationship of Remote Sensing Ecological Indicator (RSEI) and Landscape Metrics under Urban Development Intensification, Earth Science Informatics, 16(4), PP. 3797-3810, DOI: 10.1007/s12145-023-01119-z.

    Niknejad, D., 2015, Determining the Runoff Coefficient of Different Catchment Levels in Order to Harvest Rainwater, The 5th Conference of Rain Catchment Systems, Gilan-Rasht, March 4th and 5th, 2015.

    Pishnamaz Ahmadi, M., Rezaei Moghaddam, M.H. & Feizizadeh, B., 2017, Evaluation of Indices and Soil Salinity Mapping Using Remote Sensing Data (Case Study: Aji Chay Delta), Remote Sensing and Geographic Information Systems in Natural Resources, 8(1), PP. 85-96.

    Pujianiki, N.N., Parwata, I.N.S. & Osawa, T., 2021, A New Simple Procedure for Extracting Coastline from SAR Image Based on Low Pass Filter and Edge Detection Algorithm, Lontar Komputer: Jurnal Ilmiah Teknologi Informasi, 12, P. 175, DOI: 10.24843/ LKJITI.2021.v12.i03.p05.

    Rouse, J.W. Jr., Haas, R.H., Schell, J.A. & Deering, D.W., 1973, Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation, NASA-CR-132982.

    Scudiero, E., Skaggs, T.H. & Corwin, D.L., 2016, Comparative Regional-Scale Soil Salinity Assessment with Near-Ground Apparent Electrical Conductivity and Remote Sensing Canopy Reflectance, Ecological Indicators, 70, PP. 276-284, DOI: 10.1016/j.ecolind.2016.06.015.

    Shafizadeh-Moghadam, H., Minaei, F., Talebi-khiyavi, H., Xu, T. & Homaee, M., 2022, Synergetic Use of Multi-Temporal Sentinel-1, Sentinel-2, NDVI, and Topographic Factors for Estimating Soil Organic Carbon, Catena, 212, P. 106077, DOI: 10.1016/j.catena.2022.106077.

    Singh, A., 2022, Soil Salinity: A Global Threat to Sustainable Development, Soil Use and Management, 38(1), PP. 39-67, DOI: 10.1111/sum.12772.

    Yahiaoui, I., Douaoui, A., Zhang, Q. & Ziane, A., 2015, Soil Salinity Prediction in the Lower Cheliff Plain (Algeria) Based on Remote Sensing and Topographic Feature Analysis, Journal of Arid Land, 7, PP. 794-805, DOI: 10.1007/s40333-015-0053-9.

    Yu, S.P., Yang, J.S., Liu, G.M., Yao, R.J. & Wang, X.P., 2012, Multiple Time Scale Characteristics of Rainfall and Its Impact on Soil Salinization in the Typical Easily Salinized Area in Huang-Huai-Hai Plain, China, Stochastic Environmental Research and Risk Assessment, 26, PP. 983-992, DOI: 10.1007/s00477-012-0557-1.

    Zare, S., Shamsi, S.R.F. & Abtahi, S.A., 2019, Weakly-Coupled Geo-Statistical Mapping of Soil Salinity to Stepwise Multiple Linear Regression of MODIS Spectral Image Products, Journal of African Earth Sciences, 152, PP. 101-114, DOI: 10.1016/ j.jafrearsci.2019.01.008.

    Zhao, W., Zhou, C., Zhou, C., Ma, H. & Wang, Z., 2022, Soil Salinity Inversion Model of Oasis in Arid Area Based on UAV Multispectral Remote Sensing, Remote Sensing, 14(8), P. 1804, DOI: 10.3390/rs14081804.