معرفی روشی جدید به‌منظور تلفیق مکانی‌ـ زمانی محصولات دمای سطح زمین سنجنده‌های ASTER و مادیس برمبنای تبدیل موجک دوبعدی ایستا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد نقشه‌برداری، سنجش از دور، دانشکدة مهندسی نقشه‌برداری و اطلاعات مکانی، پردیس دانشکده‌های فنی، دانشگاه تهران

2 دانشجوی کارشناسی ارشد نقشه‌برداری، سیستم‌های اطلاعات مکانی، دانشکدة مهندسی نقشه‌برداری و اطلاعات مکانی، پردیس دانشکده‌های فنی، دانشگاه تهران

چکیده

پایش دمای سطح زمین (LST)، که یکی از پارامترهای مهم زیست‌محیطی محسوب می‌شود، تا کنون با استفاده از سنجنده‌های سنجش از دوری دارای توان تفکیک زمانی بالا، همچون سنجندة مادیس (توان تفکیک زمانی روزانه و توان تفکیک مکانی یک کیلومتر)، به‌طور گسترده‌ای صورت گرفته است. یکی از مهم‌ترین مشکلات این سنجنده‌ها پایین‌بودن توان تفکیک مکانی آنهاست که کارآیی‌شان را، در مواردی همچون شناخت آتش در مناطق جنگلی و مطالعة جزایر گرمایی شهری، محدود کرده است. در مقابل، سنجنده‌هایی با توان تفکیک مکانی بالا، همچون سنجندة ASTER (توان تفکیک مکانی 90 متر و توان تفکیک زمانی شانزده روز در محصول دمای سطح زمین)، توان تفکیک زمانی پایینی دارند که این منجر به ضعف آنها در پایش تغییرات سریع می‌شود. درواقع، به‌دلیل محدودیت‌های فنی، تا کنون سنجنده‌ای وجود نداشته است که، در دو بعد مکانی و زمانی، توان تفکیک بالا داشته باشد. برای حل این مشکل، روش‌های کم‌هزینه و کارآمد ادغام مکانی‌ـ زمانی مطرح شده‌اند. از مهم‌ترین روش‌های مطرح در ادغام مکانی‌ـ زمانی، روش‌های ESTARFM و STDFA شمرده می‌شوند. در این تحقیق، به‌منظور تلفیق داده‌های سنجنده‌های مادیس و ASTER از دمای سطح زمین در بخشی از شهر تهران، روشی جدید (SWT-STDFA) برمبنای روش STDFA مطرح و موجک دوبعدی ایستا تبدیل شد. نتایج حاصل از تلفیق نیز با نتایج دو روش ESTARFM و STDFA مقایسه شدند. همچنین، در ادامه، با توجه به وجود نقشة طبقه‌بندی تهیه‌شده براساس شاخص گیاهی تفاضلی نرمال‌شده در الگوریتم‌های STDFA و SWT-STDFA، درمورد تأثیر استفاده از شاخص‌های گیاهی تفاضلی نرمال‌شدة سبز (GNDVI) و شاخص گیاهی تعدیل‌شدة چندطیفی خاک (SAVI) در دقت تصویر مجازی خروجی بحث شده است. نتایج تحقیق نشان‌دهندة دقت بالای روش پیشنهادی با ریشة میانگین مربع خطاهای 3.03 کلوین، انحراف معیار 2.21 کلوین، میانگین قدرمطلق خطاهای 1.72 کلوین و ضریب همبستگی 0.92 بین تصویر دمای سطح واقعی منطقه و تصویر مجازی پیش‌بینی‌شده در مقایسه با دو روش دیگر است. افزایش شاخص‌های گیاهی GNDVI و SAVI در طبقه‌بندی دو روش STDFA و SWT-STDFA نیز تأثیری چندانی در دقت تصویر تلفیقی مجازی خروجی نداشته است.

کلیدواژه‌ها


عنوان مقاله [English]

Presentation of a New Method for the Fusion of Spatial-Temporal Land Surface Temperature Products of ASTER and MODIS Sensors Based on a Two-Dimensional Stationary Wavelet Transform

نویسندگان [English]

  • alireza bazrgar 1
  • morteza tayebi 2
1 University of Tehran
2 University of Tehran
چکیده [English]

Land surface temperature (LST) monitoring has been widely used as one of the most important environmental parameters by the high temporal resolution sensors such as the MODIS sensor (daily temporal resolution capability and spatial resolution of one kilometer). One of the main problems of these sensors is their low spatial resolution, which limits the performance of these sensors for applications such as fire detection in forest areas and the study of urban thermal islands. In contrast, high spatial resolution sensors such as the ASTER sensor (90 meter spatial resolution and 16-day temporal resolution at the land surface temperature product), they have low temporal resolution, which results in application such as rapid change monitoring. In fact, due to technical limitations, there is no sensor that has a high resolution in spatial and temporal dimensions. To solve this problem, low-cost and efficient spatial-temporal fusion methods have been developed. The most important methods for fusion spatial-temporal methods are enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) and Spatial and Temporal Data Fusion Approach (STDFA). This work uses the ESTARFM and STDFA algorithms and a new method (SWT-STDFA) based on the STDFA method and the two-dimensional stationary wavelet transformation to fuse LST data spatially and temporally. The LST products of ASTER and MODIS sensors were fused for a part of Tehran city and finally, a virtual image was obtained with a spatial resolution equal to that of the ASTER sensor and a temporal resolution equal to that of the MODIS sensor. Also, based on the existence of a classification map prepared on the basis of normalized vegetation difference index (NDVI) in STDFA and SWT-STDFA algorithms, the effect of using normalized Green Difference Vegetation Indices (GNDVI) and soil adjusted vegetation Index (SAVI) on the accuracy of the synthetic image of the output is discussed. The results of the research indicate the high accuracy of the proposed method with the root mean square error of 3.03 Kelvin, standard deviation of 2. 21 Kelvin, mean absolute difference 1.72 Kelvin and correlation coefficient of 0.92 between the image of the actual land surface temperature and the predicted synthetic image Compared to the other two methods. Also, the increase of vegetation’s indices GNDVI and SAVI in the classification of both STDFA and SWT-STDFA methods did not have much effect on the accuracy of the synthetic image of the output.

کلیدواژه‌ها [English]

  • Land surface temperature
  • ASTER Sensor thermal product
  • MODIS sensor thermal product
  • stationary wavelet transform
  • multi-source data
Abbood, O.G., Mahmood, M.A., Elsayed, H.A. & Guirguis, S., 2016, Hybrid Compression Based Stationary Wavelet Transforms, International Journal & Magazine of Engineering, Technology, Management and Research, 11(3), PP. 524-527.
Acerbi-Junior, F.W., Clever, J.G.P.W. & Schaepman, M.E., 2006, The Assessment of Multi-Sensor Image Fusion Using Wavelet Transforms for Mapping the Brazilian Savanna, International Journal of Applied Earth Observation and Geoinformation, 8(4), PP. 278-288.
Blatter, C., 2018, Wavelets: A Primer, AK Peters/CRC Press.
Brockhaus, J. & Khorram, S., 1992, A Comparison of SPOT and Landsat-TM Data for Use in Conducting Inventories of Forest Resources, International Journal of Remote Sensing, 13(16), PP. 3035-3043.
Cohen, W.B. & Goward, S.N., 2004, Landsat's Role in Ecological Applications of Remote Sensing, AIBS Bulletin, 54(6), PP. 535-545.
Gao, F., Masek J., Schwaller, M. & Hall, F. 2006, On the Blending of the Landsat and MODIS Surface Reflectance: Predicting Daily Landsat Surface Reflectance, IEEE Transactions on Geoscience and Remote Sensing, 44(8), PP. 2207-2218.
Gitelson, A.A., Viña, A., Arkebauer, T.J., Rundquist, D.C., Keydan, G. & Leavitt, B., 2003, Remote Estimation of Leaf Area Index and Green Leaf Biomass in Maize Canopies, Geophysical Research Letters, 30(5).
Gong, P., Wang, J., Yu, L. et al., 2013, Finer Resolution Observation and Monitoring of Global Land Cover: First Mapping Results with Landsat TM and ETM+ Data, International Journal of Remote Sensing, 34(7), PP. 2607-2654.
Hansen, M.C., Roy, D.P., Lindquist, E., Adusei, B., Justice, C.O. & Altstatt, A., 2008, A Method for Integrating MODIS and Landsat Data for Systematic Monitoring of Forest Cover and Change in the Congo Basin, Remote Sensing of Environment,112(5), PP. 2495-2513.
Healey, S.P., Cohen, W.B., Zhiqiang, Y. & Krankina, O.N., 2005, Comparison of Tasseled Cap-based Landsat Data Structures for Use in Forest Disturbance Detection, Remote Sensing of Environment, 97(3), PP. 301-310.
Hilker, T., Wulder, M.A., Coops, N.C., Linke, J., McDermid, G., Masek, J.G., Gao, F., White, J.C., 2009, A New Data Fusion Model for High Spatial-and Temporal-Resolution Mapping of Forest Disturbance Based on Landsat and MODIS, Remote Sensing of Environment, 113(8), PP. 1613-1627.
Huang, B. & Song, H., 2012, Spatiotemporal Reflectance Fusion via Sparse Representation, IEEE Transactions on Geoscience and Remote Sensing, 50(10), PP. 3707-3716.
Huang, B., Zhang, H., Song, H., Wang, J. & Song, C., 2013, Unified Fusion of Remote-Sensing Imagery: Generating Simultaneously High-Resolution Synthetic Spatial–Temporal–Spectral Earth Observations, Remote Sensing Letters, 4(6), PP. 561-569.
Huete, A.R., 1988, A Soil-Adjusted Vegetation Index (SAVI), Remote Sensing of Environment, 25(3), PP. 295-309.
Ju, J. & Roy, D.P., 2008, The Availability of Cloud-Free Landsat ETM+ Data over the Conterminous UnitedStates and Globally, Remote Sensing of Environment, 112(3), PP. 1196-1211.
Justice, C.O., Townshend, J.R.G., Vermote, E.F., Masuoka, E., Wolfe, R.E., Saleous, N., Roy, D.P. & Morisette, J.T., 2002, An Overview of MODIS Land Data Processing and Product Status, Remote Sensing of Environment, 83(1-2), PP. 3-15.
Kauth, R.J. & Thomas, G., 1976, The Tasselled Cap--a Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by Landsat, LARS Symposia.
Loya, N. & Keskar, A.G., 2015, Hybridization of Algorithm for Restoration of Impulse Noise Image, Procedia Computer Science, 54, PP. 728-737.
Masek, J.G. & Collatz, G.J., 2006, Estimating Forest Carbon Fluxes in a Disturbed Southeastern Landscape: Integration of Remote Sensing, Forest Inventory, and Biogeochemical Modeling, Journal of Geophysical Research: Biogeosciences, (111)G1.
Masek, J.G., Huang, C., Wolfe, R., Cohen, W., Hall, F., Kutler, J. & Nelson, P., 2008, North American forest Disturbance Mapped from a Decadal Landsat Record, Remote Sensing of Environment, 112(6), PP. 2914-2926.
Michishita, R., Chen, L., Chen, J., Zhu, X. & Xu, B., 2015, Spatiotemporal Reflectance Blending in a Wetland Environment, International Journal of Digital Earth, 8(5), PP. 364-382.
Michishita, R., Jiang, Zh., Gong, P. & Xu, B., 2012a, Bi-Scale Analysis of Multitemporal Land Cover Fractions for Wetland Vegetation Mapping, ISPRS Journal of Photogrammetry and Remote Sensing, 72, PP. 1-15.
Michishita, R., Jiang, Zh. & Xu, B., 2012b, Monitoring Two Decades of Urbanization in the Poyang Lake Area, China through Spectral Unmixing, Remote Sensing of Environment, 117, PP. 3-18.
Nunez, J., Otazu, X., Fors, O., Prades, A., Pala, V. & Arbiol, R., 1999, Multiresolution-Based Image Fusion with Additive Wavelet Decomposition, IEEE Transactions on Geoscience and Remote Sensing, 37(3), PP. 1204-1211.
Paul, L. & Ramamoorthy, D.P., 2013, Synthetic Aperture Radar Image Change Detection Using Fuzzy C-Means Clustering Algorithm, International Journal of Advanced Research in Computer and Communication Engineering, 2(3), PP. 1374-1379.
Pesquet, J.-C., Karim, H. & Carfantan, H., 1996, Time-Invariant Orthonormal Wavelet Representations, IEEE Transactions on Signal Processing, 44(8), PP. 1964-1970.
Price, J.C., 1994, How Unique Are Spectral Signatures?, Remote Sensing of Environment, 49(3), PP. 181-186.
Rouse, J.W., Haas, R.W., Schell, J.A., Deering, D.W., Harlan, J.C., 1974, Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation, Greenbelt: Nasa.
Roy, D.P., Ju, J., Lewis, P., Schaaf, C., Gao, F., Hansen, M. & Lindquist, E., 2008, Multi-Temporal MODISLandsat Data Fusion for Relative Radiometric Normalization, Gap Filling, and Prediction of Landsat Data, Remote Sensing of Environment, 112(6), PP. 3112-3130.
Settle, J. & Drake, N., 1993, Linear Mixing and the Estimation of Ground Cover Proportions, International Journal of Remote Sensing, 14(6), PP. 1159-1177.
Weng, Q., 2011, Advances in Environmental Remote Sensing: Sensors, Algorithms, and Applications, CRC Press.
Woodcock, C.E. & Ozdogan, M., 2012, Trends in Land Cover Mapping and Monitoring, Land Change Science, Springer,PP. 367-377.
Wu, M., Niu, Zh., Wang, Ch., Wu, Ch. & Wang, L., 2012, Use of MODIS and Landsat Time Series Data to Generate High-Resolution Temporal Synthetic Landsat Data Using a Spatial and Temporal Reflectance Fusion Model, Journal of Applied Remote Sensing, 6(1), 063507.
Yang, J., Wright, J., Huang, T.S. & Ma, Y., 2010, Image Super-Resolution via Sparse Representation, IEEE Transactions on Image Processing, 19(11), PP. 2861-2873.
Zhu, X., Cai, F., Tian, J. & Williams, T.K.A., 2018, Spatiotemporal Fusion of Multisource Remote Sensing Data: Literature Survey, Taxonomy, Principles, Applications, and Future Directions, Remote Sensing, 10(4), P. 527.
Zhu, X., Chen, J., Gao, F., Chen, X. & Masek, J.G., 2010, An Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model for Complex Heterogeneous Regions, Remote Sensing of Environment, 114(11), PP. 2610-2623.
Zhu, X. & Liu, D., 2014, Accurate Mapping of Forest Types Using Dense Seasonal Landsat Time-Seriesm, ISPRS Journal of Photogrammetry and Remote Sensing, 96, PP. 1-11.
Zurita-Milla, R., Clevers, J.G.P.W. & Schaepman, M.E., 2008, Unmixing-Based Landsat TM and MERIS FR Data Fusion, IEEE Geoscience and Remote Sensing Letters, 5(3), PP. 453-457.