پهنه‌بندی پارامترهای مقاومت برشی خاک (مطالعة موردی: شهر کرمانشاه)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه مهندسی عمران، دانشکدة فنی و مهندسی، دانشگاه رازی

2 دانشجوی دکتری مهندسی ژئوتکنیک، گروه مهندسی عمران، دانشکدة فنی و مهندسی، دانشگاه رازی

چکیده

به‌منظور شناخت ساختگاه، به‌دست‌آوردن پارامترهای مقاومتی خاک کاری ضروری و درعین‌حال هزینه‌بر و زمان‌گیر است. در این پژوهش، با استفاده از 135 گمانة ژئوتکنیکی حفر شده در شهر کرمانشاه، پهنه‌بندی پارامترهای مقاومت برشی خاک (زاویة اصطکاک و چسبندگی) با استفاده از نرم‌افزار ArcGIS و روش درون‌یابی کریجینگ معمولی (با شبه‌واریوگرام‌های کروی، نمایی و گوسی)، تا عمق نُه متر در بازه‌های سه‌متری انجام شده و با استفاده از شاخص‌های جذر میانگین مربعات خطا (RMSE) و میانگین قدرمطلق خطا (MAE)، بهترین مدل برای پیش‌بینی مشخصه‌ها انتخاب شده است. براساس شاخص‌های ارزیابی خطا، بهترین واریوگرام‌ها برای پهنه‌بندی زاویة اصطکاک و چسبندگی در عمق 0 تا 3 متر گوسی، 3 تا 6 متر نمایی و 6 تا 9 متر به‌ترتیب گوسی و کروی است. مطابق نتایج به‌دست‌آمده، اغلب با افزایش عمق، زاویة اصطکاک و چسبندگی افزایش یافته است و بخش‌های شمالی و جنوب‌غرب کرمانشاه، در قیاس با دیگر مناطق، دارای خاکی با زاویة اصطکاک بیشتر و چسبندگی کمتر (درشت‌دانه) هستند و بخش‌های شمال‌غرب این شهر خاک‌های رسی و آبرفتی دارند؛ با توجه به گذر رودخانة قره‌سو از این ناحیه و قرارگیری مناطق شمالی و جنوبی کرمانشاه در کوهپایه، نتایج تصدیق می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Zoning of Soil Shear Strength Parameters (Case Study: Kermanshah)

نویسندگان [English]

  • Hassan Sharafi 1
  • Reza Faraji 2
1 Associate Prof., Civil Engineering Dep. Razi University, Kermanshah
2 Ph.D. Student, Civil Engineering Dep., Razi University, Kermanshah
چکیده [English]

In order to understand the site, it is necessary to obtain soil strength parameters, which are both costly and time-consuming. In this research, utilizing 135 geotechnical boreholes drilled in Kermanshah, the zonation of soil shear strength parameters (friction angle and cohesion) using ArcGIS software and ordinary kriging interpolation method (employing spherical, exponential, and Gaussian semi-variograms), Up to a depth of 9 meters in three-meter intervals was done. The selection of the best model for predicting these characteristics was determined by assessing the root mean square error (RMSE) and mean absolute error (MAE). Based on these error evaluation indicators, the optimal variograms for zonating friction angle and cohesion at depths of 0 to 3 meters are Gaussian, 3 to 6 meters is exponential, and 6 to 9 meters are Gaussian and spherical, respectively. The results indicate that, predominantly with increasing depth, the friction angle and cohesion have increased. The northern and southwestern parts of Kermanshah, in comparison to other regions, exhibit soil with a higher friction angle and lower cohesion (coarse-grained). Furthermore, the northwestern parts of the city have clay and alluvial soils, findings corroborated by the passage of the Qarasu river through this area and the location of the northern and southern regions of Kermanshah at the foot of the mountain.

کلیدواژه‌ها [English]

  • Kriging
  • Geographic Information System (GIS)
  • Friction angle
  • Cohesion
  • Kermanshah
Abedini, M., Ghasemian, B., Shirzadi, A., Shahabi, H., Chapi, K., Pham, B.T., Bin Ahmad, B. & Tien Bui, D., 2019. A Novel Hybrid Approach of Bayesian Logistic Regression and Its Ensembles for Landslide Susceptibility Assessment, Geocarto International, 34(13), PP. 1427-1457.
Ahmad, M., Iqbal, Q. & Khan, F.A., 2013, Profiling and Zoning of Geotechnical Sub-Soil Data Using Geographic Information System, Science International, 25(3), PP. 15-20.
Akbari, M., Ghafoori, M., Moghaddas, N.H. & Lashkaripour, G.R., 2011, Seismic Microzonation of Mashhad City, Northeast Iran, Annals of Geophysics, 54(4).
Alladin, Y., Talebian, M., Arian, M. & Ahmadi, M.M., 2015, Geotechnical Investigation and Seismic Zonation of Alluvial Deposits in Western Tehran, Geoscience, 24(95), PP. 333-342.
 
Asakere, A. & Mosafa, M., 2020, Soil Strength Parameters Zonation Using Geographic Information System (GIS) (Case Study: Bandarabas City), Structural and Construction Engineering, 7(33), PP. 22-40.
Ashayeri, I., Biglari, M., Shamoradi, S.B. & Rashidi Gouya, H., 2018, Probabilistic Seismic Hazard Assessment and Geotechnical Seismic Micro-Zonation of Kangavar with Ambient Vibration and Electrical Resistivity Analysis, AUT Journal of Civil Engineering, 2(1), PP. 29-38.
Ashournejad, Q., Hosseini, A., Pradhan, B. & Hosseini, S.J., 2019, Hazard Zoning for Spatial Planning Using GIS-Based Landslide Susceptibility Assessment: A New Hybrid Integrated Data-Driven and Knowledge-Based Model, Arabian Journal of Geosciences, 12(4), PP. 1-18.
Aslani, M., Alesheikh A.A. & Shad, R., 2010, Preparation of landslide Susceptibility Map through Fuzzy Basis Rule Inference System and GIS (Study Area: Part of Mazandaran Province), Iranian Journal of Remote Sensing and GIS, 13(2), PP. 35-74.
ASTM D3080, 1990, Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions, West Conshohocken, PA: ASTM.
Baharvand, S., Rahnamarad, J., Soori, S. & Saadatkhah, N., 2020, Landslide Susceptibility Zoning in a Catchment of Zagros Mountains Using Fuzzy Logic and GIS, Environmental Earth Sciences, 79(10), PP. 1-10.
Chen, Y., Ye, Z., Liu, H., Chen, R., Liu, Z. & Liu, H., 2021, A GIS-Based Approach for Flood Risk Zoning by Combining Social Vulnerability and Flood Susceptibility: A Case Study of Nanjing, China, International Journal of Environmental Research and Public Health, 18(21), P. 11597.
Dahal, R.K., Hasegawa, S., Nonomura, A., Yamanaka, M., Masuda, T. & Nishino, K., 2008, GIS-based Weights-of-Evidence Modelling of Rainfall-Induced Landslides in Small Catchments for Landslide Susceptibility Mapping, Environmental Geology, 54(2), PP. 311-324.
Das, B. & Sobhan, K., 2013, Principles of Geotechnical Engineering, CENGAGE Learning, Stamford, USA.
Deligiannakis, G., Papanikolaou, I.D. & Roberts, G., 2018, Fault Specific GIS Based Seismic Hazard Maps for the Attica Region, Greece, Geomorphology, 306, PP. 264-282.
Drouet, S., Ameri, G., Le Dortz, K., Secanell, R. & Senfaute, G., 2020, A probabilistic Seismic Hazard Map for the Metropolitan France, Bulletin of Earthquake Engineering, 18(5), PP. 1865-1898.
Faraji Sabokbar, H. & Azizi, G., 2007, Evaluating the Accuracy of Spatial Interpolation Methods Case Study: Rainfall Modeling of Kardeh (Mashhad), Geographical Research, 38(58), PP. 1-15.
Farashi, S. & Ajalloeian, R., 2012, Engineering Geological Mapping at east of Isfahan City Using GIS, Aust J. Basic Appl. Sci., 6(1), PP. 165-172.
Gaytan, A.R., Estrella, H.F., Preciado, A., Bandy, W.L., Lazcano, S., Nolasco, L.A., Gonzalez, J.A. & Korn, M., 2020, Subsoil Classification and Geotechnical Zonation for Guadalajara City, México: Vs30, Soil Fundamental Periods, 3D Structure and Profiles, Near Surface Geophysics, 18(2), PP. 175-188.
Ghahrooditali, M., 2003, Kriging Interpolation Evaluation, Geographical Research, 34(43), PP. 95-108.
Ghahrooditali, M. & Babaeifini, O., 2019, An Introduction to Geographic Information Systems (Geography), Payam-e-Noor University Press.
Ghalandarzadeh, A., Sahraeian, S., Kavand, A. & Kamrani Moghaddam, B., 2008, Seismic Microzonation of Shiraz City, Southwest of Iran, In Geotechnical Earthquake Engineering and Soil Dynamics, IV (PP. 1-10).
Giardini, D., Danciu, L., Erdik, M., Şeşetyan, K., Demircioğlu Tümsa, M.B., Akkar, S., Gülen, L. & Zare, M., 2018. Seismic Hazard Map of the Middle East,Bulletin of Earthquake Engineering, 16(8), PP. 3567-3570.
Gupta, R.P., Kanungo, D.P., Arora, M.K. & Sarkar, S., 2008, Approaches for Comparative Evaluation of Raster GIS-Based Landslide Susceptibility Zonation Maps, International Journal of Applied Earth Observation and Geoinformation, 10(3), PP. 330-341.
Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M. & Ardizzone, F., 2005, Probabilistic Landslide Hazard Assessment at the Basin Scale, Geomorphology, 72(1-4), PP. 272-299.
Haeri, S. & Bonab, M.H., 2000, Seismic Microzonation of the City of Tabriz in Iran, Asian Journal of Civil Engineering (Building and Housing), 1(3), PP. 63-70.
Hafezi Moghadas, N. & Ghezi, A., 2008, Geotechnical Zoning and Assessment of Allowable Bearing Capacity of Mashhad City, 5th Iranian Conference of Engineering Geology and the Environment, Tehran.
Hashemi Tabatabaei, S., Fatemi Oghda, S.M., Beytollahi, A., Saeid, N., Mohamadi, A. & Salamat, A.S., 2013, Guide to Preparing Engineering Geology Maps for Seismic Geotechnical Microzonation in Urban Areas, Road, Housing & Urban Development Research Center.
Hettiarachchi, H. & Brown, T., 2009, Use of SPT Blow Counts to Estimate Shear Strength Properties of Soils: Energy Balance Approach, Journal of Geotechnical and Geoenvironmental Engineering, 135(6), PP. 830-834.
Jafari, M.K., Razmkhah, A. & Keshavarz, M., 2003, Shear Wave Velocity Zonation of Alluviums in Tehran, Journal of Faculty of Engineering, 37(2), PP. 213-225.
Jalil, A., Fathani, T.F., Satyarno, I. & Wilopo, W., 2020, A Study on the Liquefaction Potential in Banda Aceh City after the 2004 Sumatera Earthquake, GEOMATE Journal, 18(65), PP. 147-155.
Kajihara, K., Okuda, H., Kiyota, T. & Konagai, K., 2020, Mapping of Liquefaction Risk on Road Network Based on Relationship between Liquefaction Potential and Liquefaction-Induced Road Subsidence, Soils and Foundations, 60(5), PP. 1202-1214.
Kamalian, M., Jafari, M.K., Ghayamghamian, M.R., Shafiee, A., Hamzehloo, H., Haghshenas, E. & Sohrabi-Bidar, A., 2008, Site Effect Microzonation of Qom, Iran, Engineering Geology, 97(1-2), PP. 63-79.
Kanungo, D.P., Arora, M.K., Sarkar, S. & Gupta, R.P., 2006, A Comparative Study of Conventional, ANN Black Box, Fuzzy and Combined Neural and Fuzzy Weighting Procedures for Landslide Susceptibility Zonation in Darjeeling Himalayas, Engineering geology, 85(3-4), PP. 347-366.
Karbasi ravari, M., 2010. Geotechnical zoning of Arak city based on SPT results. 3rd National Congress on Urban Management and Construction Stability, Arak.
Kaur, H., Gupta, S., Parkash, S. & Thapa, R., 2018, Knowledge-Driven Method: A Tool for Landslide Susceptibility Zonation (LSZ), Geology, Ecology, and Landscapes, PP. 1-15.
Kaya, A., 2009, Residual and Fully Softened Strength Evaluation of Soils Using Artificial Neural Networks, Geotechnical and Geological Engineering, 27(2), PP. 281-288.
Kolat, C., Ulusay, R. & Suzen, M.L., 2012, Development of Geotechnical Microzonation Model for Yenisehir (Bursa, Turkey) Located at a Seismically Active Region, Engineering Geology, 127, PP. 36-53.
Lee, S. & Pradhan, B., 2007, Landslide Hazard Mapping at Selangor, Malaysia Using Frequency Ratio and Logistic Regression Models, Landslides, 4(1), PP. 33-41.
Ly, H.B., Le, T.T., Vu, H.L., Tran, V.Q., Le, L.M. & Pham, B.T., 2020, Computational Hybrid Machine Learning Based Prediction of Shear Capacity for Steel Fiber Reinforced Concrete Beams, Sustainability, 12(7), P. 2709.
Mathew, J., Jha, V.K. & Rawat, G.S., 2009, Landslide Susceptibility Zonation Mapping and Its Validation in Part of Garhwal Lesser Himalaya, India, Using Binary Logistic Regression Analysis and Receiver Operating Characteristic Curve Method, Landslides, 6(1), PP. 17-26.
Mirnezhad, A., Javdanian, H. & Hadad, A., 2016, Physical and Mechanical Parameters Zonation of Semnan Soil, International Conference on Civil Engineering, Tehran.
Moayedi, H., Gör, M., Khari, M., Foong, L.K., Bahiraei, M. & Bui, D.T., 2020, Hybridizing four Wise neural-Metaheuristic Paradigms in Predicting Soil Shear Strength, Measurement1, 56, P. 107576.
Motaghedi, H. & Eslami, A., 2014, Analytical Approach for Determination of Soil Shear Strength Parameters from CPT and CPTu Data, Arabian Journal for Science and Engineering, 39(6), PP. 4363-4376.
Oliveira, L., Teves-Costa, P., Pinto, C., Gomes, R.C., Almeida, I.M., Ferreira, C., Pereira, T. & Sotto-Mayor, M., 2020, Seismic Microzonation Based on Large Geotechnical Database: Application to Lisbon, Engineering Geology, 265, P. 105417.
Pham, B.T., Qi, C., Ho, L.S., Nguyen-Thoi, T., Al-Ansari, N., Nguyen, M.D., Nguyen, H.D., Ly, H.-B., Le, H.V. & Prakash, I., 2020, A Novel Hybrid Soft Computing Model Using Random Forest and Particle Swarm Optimization for Estimation of Undrained Shear Strength of Soil, Sustainability, 12(6), P. 2218.
Safari, H., 2007, Comparison of IDW and KRIGING Interpolation Methods, Shahrnegar, 7(40).
Saroglou, C., 2019, GIS-Based Rockfall Susceptibility Zoning in Greece, Geosciences, 9(4), P. 163.
Sharafi, H., Haeri, S.M. & Rad Malekshahi, M., 2006, Seismic Microzonation of Urban Areas Using Microtremor Measurements (Case Study: Kermanshah City), 7th International Congress on Civil Engineering, Tehran.
Vanapalli, S., Fredlund, D., Pufahl, D., & Clifton, A., 1996, Model for the Prediction of Shear Strength with Respect to Soil Suction, Canadian Geotechnical Journal, 33(3), PP. 379-392.