شناسایی الگوهای زمانی‌ـ مکانی ازدحام ترافیکی با استفاده از کلان‌داده‌های مبتنی‌بر تصاویر ترافیکی سرویس نقشة گوگل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشکدة مهندسی علوم زمین، دانشگاه صنعتی اراک، اراک

2 استاد دانشکدة مهندسی عمران، دانشگاه علم‌وصنعت ایران، تهران

چکیده

تحلیل وضعیت ترافیکی و پیشنهاد روش‌های مدیریت جریان ترافیک نقش اساسی در ارزیابی عملکرد بسیاری از سیستم‌های حمل‌ونقلی ایفا می‌کند. در بین روش‌های جمع‌آوری داده‌های ترافیکی، رویکردهای مبتنی‌بر فنّاوری‌های نوین که امکان گرد‌آوری حجم بسیاری از داده‌های پویای زمانی‌ـ مکانی را فراهم می‌آورند و استخراج روندها و الگوها را تسهیل می‌کنند اهمیت بسیاری دارند. در این پژوهش، تهران به‌منزلة پایتخت ایران، با ویژگی‌های اقتصادی و اجتماعی خاصی که دارد و تنوع سفرها که به وضعیت ترافیکی متغیر منجر می‌شود، مطالعه شده است. داده‌های حاصل از پردازش رقومی تصاویر ترافیکی به‌دست‌آمده از سرویس نقشة گوگل در بازة زمانی پیوستة یک‌ماهه‌ای (هفدهم فروردین تا هفدهم اردیبهشت 1398)، نخستین بار به‌منظور ارزیابی روند تغییرات میانگین ازدحام ترافیکی در سطح نواحی منطقة مطالعاتی، به‌کار رفته است. پس از استخراج داده‌های اولیه و با توجه به تغییر الگوی سفرها و در نتیجه، میزان ازدحام ترافیکی، شاخص ازدحام ترافیکی (CI) به‌تفکیک در روزهای کاری و غیرکاری، محاسبه شد و به مرکز نواحی 117‌گانة شهر تهران اختصاص یافت. با استفاده از تحلیل‌های توصیفی روی کلان‌داده‌های مورد بررسی، ساعات اوج ازدحام ترافیکی در بازة زمانی مورد مطالعه استخراج شد. سپس شاخص Getis Ord، نواحی پرازدحام منطقة مطالعاتی را براساس ارزیابی خوشه‌های مکانی، مشخص کرد. همچنین ارتباط زمانی بین مقادیر ازدحادم ترافیکی، در برش‌های زمانی متفاوت طی کل بازة زمانی مورد مطالعه، با استفاده از آزمون آماری کروسکال والیس ارزیابی شد و فرض صفر مبتنی‌بر همبستگی بین مقادیر میانگین ازدحام و در نتیجه، همبستگی زمانی بین مقادیر تأیید شد. با استفاده از تحلیل‌های پوششی نقشه‌های ترافیکی نیز، خوشه‌های ترافیکی پرازدحام در سطح اطمینان 90%، در اوج صبح و عصر، به‌تفکیک روزهای کاری و غیرکاری استخراج شد. نتایج این پژوهش می‌تواند در اصلاح و بازنگری محدوده‌های ترافیکی مؤثر باشد و همچنین به تحلیل‌های مرتبط با آلودگی هوا، مطالعات در زمینة قیمت‌گذاری معابر و بررسی روند شکل‌گیری و انتشار گلوگاه‌های ترافیکی در بازه‌های زمانی دلخواه، یاری برساند.

کلیدواژه‌ها


عنوان مقاله [English]

Identifying Spatio-Temporal Patterns of Traffic Congestion Using Data Obtained from Google Maps Service Traffic Image

نویسندگان [English]

  • Matin Shahri 1
  • Afshin Shariat Mohaymany 2
1 Assistant Prof., Dep. of Geoscience Engineering, Arak University of Technology, Arak
2 Prof. of School of Civil Engineering, Iran University of Science and Technology, Tehran
چکیده [English]

Analyzing traffic conditions and suggesting traffic management methods play a critical role in evaluating the effectiveness of transportation systems. Among the methods suggested for collecting traffic data, approaches based on new technologies attracted more attention due to the ability of collecting large amounts of dynamic spatio-temporal data making it easy to identify trends and patterns. In this study, Tehran, the capital of Iran with socio-economic characteristics and the variety of urban trips which lead to heterogeneous traffic state will be considered. Data obtained from digital processing of Google Maps traffic images the one-month time interval (April 7th to May 7th, 2017), has been applied for the first time to evaluate the trend and overall pattern of the changes in traffic congestion in the study area. Considering the variety of trip patterns and consequently the traffic congestion, traffic congestion index (CI) has been calculated on workdays and weekends separately and was assigned to the district center and the morning and evening peak-hours were extracted using descriptive analysis. By applying Getis-Ord hot-spot and cold-spot index, the clusters of congested areas have been recognized over the study area. Also, the temporal relationship between traffic congestion indexes in different time sections was evaluated using Kruskal-Wallis statistical test and the null hypothesis of correlation between the mean values of congestion index was confirmed. Using overlay analysis of congestion maps, clusters indicating congested areas at 90% confidence intervals were extracted during morning and evening peaks on weekdays and weekends separately. The results of this study can be effective in modifying traffic congestion zones, analyzing pollution or studies relating to road pricing, and assessing the process of traffic congestion propagation during desired time intervals.
 

کلیدواژه‌ها [English]

  • Traffic congestion
  • Spatio-temporal analyses
  • Map overlay
  • Traffic images
Bertini, R.L. & Tantiyanugulchai, S., 2004, Transit buses as traffic probes: Use of geolocation data for empirical evaluation, Transportation Research Record, 1870(1), PP. 35-45.
Bertini, R.L., Leal, M. & Lovell, D.J.R.B., 2002, Generating Performance Measures from Portland’s Archived Advanced Traffic Management System Data, Transportation Research Board, Washington D.C.
Cipriani, E., Mannini, L., Montemarani, B., Nigro, M. & Petrelli, M., 2018, Congestion Pricing Policies: Design and Assessment for the City of Rome, Italy, Transport Policy, developers.google.com, from https://developers.google.com/maps/support.
Dewulf, B., Neutens, T., Vanlommel, M., Logghe, S., De Maeyer, P., Witlox, F., De Weerdt, Y. & Van de Weghe, N., 2015, Examining Commuting Patterns using Floating Car Data and Circular Statistics: Exploring the Use of New Methods and Visualizations to Study Travel Times, Journal of Transport Geography, 48: PP. 41-51.
Di, X., Xiao, Y., Zhu, C., Deng, Y., Zhao, Q. & Rao, W., 2019, Traffic Congestion Prediction by Spatiotemporal Propagation Patterns, 2020, 19th IEEE International Conference on Mobile Data Management (MDM), IEEE.
Elhorst, J.P., 2001, Dynamic Models in Space and Time, Geographical Analysis, 33(2), PP. 119-140.
Gething, P.W., Noor, A.M., Gikandi, P.W., Hay, S.I., Nixon, M.S., Snow, R.W. & Atkinson, P.M., 2008, Developing Geostatistical Space–Time Models to Predict Outpatient Treatment Burdens from Incomplete National Data, Geographical Analysis, 40(2): PP. 167-188.
Getis, A., 2008, A History of the Concept of Spatial Autocorrelation: A Geographer's Perspective, Geographical Analysis, 40(3): PP. 297-309.
Griffith, D.A., 2010, Modeling Spatio-Temporal Relationships: Retrospect and Prospect, Journal of Geographical Systems, 12(2): PP. 111-123.
He, F., Yan, X., Liu, Y. & Ma, L., 2016, A Traffic Congestion Assessment Method for Urban Road Networks Based on Speed Performance Index, Procedia Engineering, 137, PP. 425-433.
Ito, T. & Kaneyasu, R., 2017, Predicting Traffic Congestion Using Driver Behavior, Procedia Computer Science, 112, PP. 1288-1297.
Jia, S., Peng, H. & Liu, S., 2011, Urban Traffic State Estimation Considering Resident Travel Characteristics and Road Network Capacity, Journal of Transportation Systems Engineering and Information Technology, 11(5), PP. 81-85.
Kohan, M. & Ale, J.M., 2020, Discovering Traffic Congestion through Traffic Flow Patterns Generated by Moving Object Trajectories, Computers, Environment and Urban Systems, 80, P. 101426.
 
Levine, J. & Garb, Y., 2002, Congestion Pricing's Conditional Promise: Promotion of Accessibility or Mobility?, Transport Policy, 9(3), PP. 179-188.
Li, L., Wu, J., Ghosh, J.K. & Ritz, B., 2013, Estimating Spatiotemporal Variability of Ambient Air Pollutant Concentrations with a Hierarchical Model, Atmospheric Environment, 71, PP. 54-63.
Li, L., Chen, X., Li, Q., Tan, X., Chen, J., Wang, D. & Jia, P., 2021, Contextualizing Human Dynamics: Understanding the Semantics of Movement Trajectories with Wi-Fi Data, Travel Behaviour and Society, 25, PP. 183-192.
Muñoz-Villamizar, A., Solano-Charris, E.L., AzadDisfany, M. & Reyes-Rubiano, L., 2021, Study of Urban-Traffic Congestion Based on Google Maps API: The Case of Boston, IFAC-PapersOnLine, 54(1), PP. 211-216.
Naylor, K., Tootoo, J., Yakusheva, O., Shipman, S., Bynum, J. & Davis, M., 2019, Geographic Variation in Spatial Accessibility of U.S. Healthcare Providers, PLOS ONE, 14, P. e0215016.
Oud, J.H., Folmer, H., Patuelli, R. & Nijkamp, P., 2012, ContinuousTime Modeling with Spatial Dependence, Geographical Analysis, 44(1), PP. 29-46..
Rahmani, M., Koutsopoulos, H.N. & Jenelius, E., 2017, Travel Time Estimation from Sparse Floating Car Data with Consistent Path Inference: A Fixed Point Approach, Transportation Research Part C: Emerging Technologies, 85, PP. 628-643.
Rodriguez-Vega, M., Canudas-de-Wit, C. & Fourati, H., 2021, Urban Network Traffic State Estimation Using a Data-Based Approach, IFAC-PapersOnLine, 54(2), PP. 278-283.
Shaker, R.R., Altman, Y., Deng, C., Vaz, E. & Forsythe, K.W., 2019, Investigating Urban Heat Island through Spatial Analysis of New York City Streetscapes, Journal of Cleaner Production, 233, PP. 972-992.
Shariat Mohaymany, A. & Shahri, M., 2020, Evaluating the Impact of New Congestion Charging Scheme Using Smartphone-Based Data: A Spatial Change Detection Study, Canadian Journal of Civil Engineering, 47(9), PP. 1105-1115.
Song, J., Zhao, C., Zhong, S., Nielsen, T.A.S. & Prishchepov, A.V., 2019, Mapping Spatio-Temporal Patterns and Detecting the Factors of Traffic Congestion with Multi-Source Data Fusion and Mining Techniques, Computers, Environment and Urban Systems, 77, P. 101364.
Turochy, R.E. & Smith, B.L., 2002, Measuring Variability in Traffic Conditions by Using Archived Traffic Data, Transportation Research Record, 1804(1), PP. 168-172.
Wagner, J.M.S., Eschbach, M., Vosseberg, K. & Gennat, M., 2020, Travel Time Estimation by Means of Google API Data, IFAC-PapersOnLine, 53(2), PP. 15434-15439.
Yang, L. & Wang, L., 2020, Mining Traffic Congestion Propagation Patterns Based on Spatio-Temporal Co-Location Patterns, Evolutionary Intelligence, 13(2), PP. 221-233.
Yang, S., Wu, J., Xu, Y. & Yang, T., 2019, Revealing Heterogeneous Spatiotemporal Traffic Flow Patterns of Urban Road Network via Tensor Decomposition-Based Clustering Approach, Physica A: Statistical Mechanics and its Applications, 526, P. 120688.
Yao, W., Zhang, M., Jin, S. & Ma, D., 2021, Understanding Vehicles Commuting Pattern Based on License Plate Recognition Data, Transportation Research Part C: Emerging Technologies, 128, P. 103142.
Yu, B., Lee, Y. & Sohn, K., 2020, Forecasting Road Traffic Speeds by Considering Area-Wide Spatio-Temporal Dependencies Based on a Graph Convolutional Neural Network (GCN), Transportation Research Part C: Emerging Technologies, 114, PP. 189-204.
Zhan, X., Li, R. & Ukkusuri, S.V., 2020, Link-Based Traffic State Estimation and Prediction for Arterial Networks Using License-Plate Recognition Data, Transportation Research Part C: Emerging Technologies, 117, P. 102660.
Zhao, P. & Hu, H., 2019, Geographical Patterns of Traffic Congestion in Growing Megacities: Big Data Analytics from Beijing, Cities, 92, PP. 164-176.