Bertini, R.L. & Tantiyanugulchai, S., 2004, Transit buses as traffic probes: Use of geolocation data for empirical evaluation, Transportation Research Record, 1870(1), PP. 35-45.
Bertini, R.L., Leal, M. & Lovell, D.J.R.B., 2002, Generating Performance Measures from Portland’s Archived Advanced Traffic Management System Data, Transportation Research Board, Washington D.C.
Cipriani, E., Mannini, L., Montemarani, B., Nigro, M. & Petrelli, M., 2018,
Congestion Pricing Policies: Design and Assessment for the City of Rome, Italy, Transport Policy, developers.google.com, from
https://developers.google.com/maps/support.
Dewulf, B., Neutens, T., Vanlommel, M., Logghe, S., De Maeyer, P., Witlox, F., De Weerdt, Y. & Van de Weghe, N., 2015, Examining Commuting Patterns using Floating Car Data and Circular Statistics: Exploring the Use of New Methods and Visualizations to Study Travel Times, Journal of Transport Geography, 48: PP. 41-51.
Di, X., Xiao, Y., Zhu, C., Deng, Y., Zhao, Q. & Rao, W., 2019, Traffic Congestion Prediction by Spatiotemporal Propagation Patterns, 2020, 19th IEEE International Conference on Mobile Data Management (MDM), IEEE.
Elhorst, J.P., 2001, Dynamic Models in Space and Time, Geographical Analysis, 33(2), PP. 119-140.
Gething, P.W., Noor, A.M., Gikandi, P.W., Hay, S.I., Nixon, M.S., Snow, R.W. & Atkinson, P.M., 2008, Developing Geostatistical Space–Time Models to Predict Outpatient Treatment Burdens from Incomplete National Data, Geographical Analysis, 40(2): PP. 167-188.
Getis, A., 2008, A History of the Concept of Spatial Autocorrelation: A Geographer's Perspective, Geographical Analysis, 40(3): PP. 297-309.
Griffith, D.A., 2010, Modeling Spatio-Temporal Relationships: Retrospect and Prospect, Journal of Geographical Systems, 12(2): PP. 111-123.
He, F., Yan, X., Liu, Y. & Ma, L., 2016, A Traffic Congestion Assessment Method for Urban Road Networks Based on Speed Performance Index, Procedia Engineering, 137, PP. 425-433.
Ito, T. & Kaneyasu, R., 2017, Predicting Traffic Congestion Using Driver Behavior, Procedia Computer Science, 112, PP. 1288-1297.
Jia, S., Peng, H. & Liu, S., 2011, Urban Traffic State Estimation Considering Resident Travel Characteristics and Road Network Capacity, Journal of Transportation Systems Engineering and Information Technology, 11(5), PP. 81-85.
Kohan, M. & Ale, J.M., 2020, Discovering Traffic Congestion through Traffic Flow Patterns Generated by Moving Object Trajectories, Computers, Environment and Urban Systems, 80, P. 101426.
Levine, J. & Garb, Y., 2002, Congestion Pricing's Conditional Promise: Promotion of Accessibility or Mobility?, Transport Policy, 9(3), PP. 179-188.
Li, L., Wu, J., Ghosh, J.K. & Ritz, B., 2013, Estimating Spatiotemporal Variability of Ambient Air Pollutant Concentrations with a Hierarchical Model, Atmospheric Environment, 71, PP. 54-63.
Li, L., Chen, X., Li, Q., Tan, X., Chen, J., Wang, D. & Jia, P., 2021, Contextualizing Human Dynamics: Understanding the Semantics of Movement Trajectories with Wi-Fi Data, Travel Behaviour and Society, 25, PP. 183-192.
Muñoz-Villamizar, A., Solano-Charris, E.L., AzadDisfany, M. & Reyes-Rubiano, L., 2021, Study of Urban-Traffic Congestion Based on Google Maps API: The Case of Boston, IFAC-PapersOnLine, 54(1), PP. 211-216.
Naylor, K., Tootoo, J., Yakusheva, O., Shipman, S., Bynum, J. & Davis, M., 2019, Geographic Variation in Spatial Accessibility of U.S. Healthcare Providers, PLOS ONE, 14, P. e0215016.
Oud, J.H., Folmer, H., Patuelli, R. & Nijkamp, P., 2012, Continuous‐Time Modeling with Spatial Dependence, Geographical Analysis, 44(1), PP. 29-46..
Rahmani, M., Koutsopoulos, H.N. & Jenelius, E., 2017, Travel Time Estimation from Sparse Floating Car Data with Consistent Path Inference: A Fixed Point Approach, Transportation Research Part C: Emerging Technologies, 85, PP. 628-643.
Rodriguez-Vega, M., Canudas-de-Wit, C. & Fourati, H., 2021, Urban Network Traffic State Estimation Using a Data-Based Approach, IFAC-PapersOnLine, 54(2), PP. 278-283.
Shaker, R.R., Altman, Y., Deng, C., Vaz, E. & Forsythe, K.W., 2019, Investigating Urban Heat Island through Spatial Analysis of New York City Streetscapes, Journal of Cleaner Production, 233, PP. 972-992.
Shariat Mohaymany, A. & Shahri, M., 2020, Evaluating the Impact of New Congestion Charging Scheme Using Smartphone-Based Data: A Spatial Change Detection Study, Canadian Journal of Civil Engineering, 47(9), PP. 1105-1115.
Song, J., Zhao, C., Zhong, S., Nielsen, T.A.S. & Prishchepov, A.V., 2019, Mapping Spatio-Temporal Patterns and Detecting the Factors of Traffic Congestion with Multi-Source Data Fusion and Mining Techniques, Computers, Environment and Urban Systems, 77, P. 101364.
Turochy, R.E. & Smith, B.L., 2002, Measuring Variability in Traffic Conditions by Using Archived Traffic Data, Transportation Research Record, 1804(1), PP. 168-172.
Wagner, J.M.S., Eschbach, M., Vosseberg, K. & Gennat, M., 2020, Travel Time Estimation by Means of Google API Data, IFAC-PapersOnLine, 53(2), PP. 15434-15439.
Yang, L. & Wang, L., 2020, Mining Traffic Congestion Propagation Patterns Based on Spatio-Temporal Co-Location Patterns, Evolutionary Intelligence, 13(2), PP. 221-233.
Yang, S., Wu, J., Xu, Y. & Yang, T., 2019, Revealing Heterogeneous Spatiotemporal Traffic Flow Patterns of Urban Road Network via Tensor Decomposition-Based Clustering Approach, Physica A: Statistical Mechanics and its Applications, 526, P. 120688.
Yao, W., Zhang, M., Jin, S. & Ma, D., 2021, Understanding Vehicles Commuting Pattern Based on License Plate Recognition Data, Transportation Research Part C: Emerging Technologies, 128, P. 103142.
Yu, B., Lee, Y. & Sohn, K., 2020, Forecasting Road Traffic Speeds by Considering Area-Wide Spatio-Temporal Dependencies Based on a Graph Convolutional Neural Network (GCN), Transportation Research Part C: Emerging Technologies, 114, PP. 189-204.
Zhan, X., Li, R. & Ukkusuri, S.V., 2020, Link-Based Traffic State Estimation and Prediction for Arterial Networks Using License-Plate Recognition Data, Transportation Research Part C: Emerging Technologies, 117, P. 102660.
Zhao, P. & Hu, H., 2019, Geographical Patterns of Traffic Congestion in Growing Megacities: Big Data Analytics from Beijing, Cities, 92, PP. 164-176.