نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشجوی دکتری سنجش از دور، گروه مهندسی نقشهبرداری و اطلاعات مکانی، دانشگاه صنعتی خواجه نصیرالدین طوسی
2 استادیار،دانشکده مهندسی نقشه برداری واطلاعات مکانی، دانشگاه تهران
3 استاد، گروه مهندسی فتوگرامتری و سنجش ازدور، دانشگاه صنعتی خواجه نصیر طوسی
4 دکتری سنجش از دور، گروه مهندسی فتوگرامتری و سنجش از دور، دانشکده مهندسی نقشه برداری، دانشگاه صنعتی خواجه نصیرالدین طوسی
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
With the development of remote sensing science, the use of hyperspectral images is becoming more widespread. Classification is one of the most popular topics in hyperspectral remote sensing. In the last two decades, a number of methods have been proposed to address the problem of hyperspectral data classification.In the present study, a structure based on learning capsule networks has been used to classify hyperspectral images, so that the network structure can have the most optimal generation of features by using a convolution layer and a capsule layer, and at the same time Avoid overfitting the on training data. The obtained results show the high quality of production features in the proposed structure.
With the development of remote sensing science, the use of hyperspectral images is becoming more widespread. Classification is one of the most popular topics in hyperspectral remote sensing. In the last two decades, a number of methods have been proposed to address the problem of hyperspectral data classification.In the present study, a structure based on learning capsule networks has been used to classify hyperspectral images, so that the network structure can have the most optimal generation of features by using a convolution layer and a capsule layer, and at the same time Avoid overfitting the on training data. The obtained results show the high quality of production features in the proposed structure.
In order to improve the classification accuracy, the feature extraction approach through the designed network and the classification by the Extreme Gradient Boosting was compared with the classification method by the global deep network. The proposed capsule approach consists of 3 basic layers: 1) Prime caps, which are capsules of size 8 and 32 with 9 × 9 filters and movement step 2, 2) Digitcaps with 10 16-dimensional capsules, and 3) fully connected layer. The results of examining two approaches for deep networking as well as combining capsule networks with XGBoost reinforcement tree algorithm were compared. Approaches such as SVM, RF-200, LSTM, GRU and GRU-Pretanh were considered to compare the proposed approach based on the configurations mentioned in their research.
Up in addition to the study and quality measurement of production vector deep features by the proposed method in different classifiers, the ability of deep global networks in the application of classification should also be examined. The results of examining two approaches for deep network and also combining CapsNet with XGBoost show that by using the proposed combined method, images are classified with 99% accuracy on training data and 97.5% accuracy on test data.
Up in addition to the study and quality measurement of production vector deep features by the proposed method in different classifiers, the ability of deep global networks in the application of classification should also be examined.
The results of examining two approaches for deep network and also combining CapsNet with XGBoost show that by using the proposed combined method, images are classified with 99% accuracy on training data and 97.5% accuracy on test data.
کلیدواژهها [English]