Abdi, O., Kamkar, B., Shirvani, Z., Teixeira da Silva, J.A. & Buchroithner, M.F., 2018, Spatial-Statistical Analysis of Factors Determining Forest Fires: A Case Study from Golestan, Northeast Iran, Geomatics, Natural Hazards and Risk, 9(1), PP. 267-280. https://doi.org/10.1080/19475705.2016.1206629.
Abdollahi, M., Islam, T., Gupta, A. & Hassan, Q., 2018, An Advanced Forest Fire Danger Forecasting System: Integration of Remote Sensing and Historical Sources of Ignition Data, Remote Sensing, 10(6), P. 923. https://doi.org/10.3390/rs10060923.
Adab, H., Atabati, A., Oliveira, S. & Moghaddam Gheshlagh, A., 2018, Assessing Fire Hazard Potential and Its Main Drivers in Mazandaran Province, Iran: A Data-Driven Approach, Environmental Monitoring and Assessment, 190(11), P. 670. https://doi.org/ 10.1007/s10661-018-7052-1.
Alibakhshi, R., Khademi Eslam, H.A. & Parsapajouh, D., 2005, Effect of Sea Level Variation on Wood Physical and Mechanica Properties of Cupressus Sempervirens I Noushahr Region, Journal of Agricultura Sciences, 11(2), PP. 205-216. Retrieved from https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=52025.
Amiri, M.J. & Eslamian, S.S., 2010, Investigation of Climate Change in Iran, Journal of Environmental Science and Technology, 3(4), PP. 208-216.
Atchley, A.L., Kinoshita, A.M., Lopez, S.R., Trader, L. & Middleton, R., 2018, Simulating Surface and Subsurface Water Balance Changes Due to Burn Severity, Vadose Zone Journal, 17(1), P. 180099. https://doi.org/10.2136/vzj2018.05.0099.
Banj Shafiei, A., Akbarinia, M., Jalali, S.G., Azizi, P. & Hosseini, S.M., 2007, The Effects of Fire on Forest Structure: Case Study in Chelir, Kheyroudkenar, (Watershed Number 45 Golband, Nowshahr), Pajouhesh & Sazandegi, 20(3 (76 In Natural Resources)), PP. 105-112. Retrieved from https://www.sid.ir/en/journal/ ViewPaper.aspx?ID=119372.
Biranvand, A., Babaei Kafaki, S. & Kiadaliri, H., 2011, Investigation the Ecological Factors Affecting Fire Spread in Forest Ecosystems (Case Study: Kakareza Lorestan), Journal of Renewable Natural Resources Research, 2(2 (SERIAL NUMBER 4)), PP. 1-13. Retrieved from https://www.sid.ir/en/journal/ViewPaper. aspx?ID=293381.
Cardil, A., Mola-Yudego, B., Blázquez-Casado, Á. & González-Olabarria, J.R., 2019, Fire and Burn Severity Assessment: Calibration of Relative Differenced Normalized Burn Ratio (RdNBR) with Field Data, Journal of Environmental Management, 235, PP. 342-349. https://doi.org/10.1016/j.jenvman.2019.01.077.
Chu, T. & Guo, X., 2014, An Assessment of Fire Occurrence Regime and Performance of Canadian Fire Weather Index in South Central Siberian Boreal Region, Nat. Hazards Earth Syst. Sci. Discuss., 2014, PP. 4711-4742. https://doi.org/10.5194/nhessd-2-4711-2014.
Chuvieco, E., Lizundia-Loiola, J., Pettinari, M.L., Ramo, R., Padilla, M., Tansey, K., … & Plummer, S., 2018, Generation and Analysis of a New Global Burned Area Product Based on MODIS 250 m Reflectance Bands and Thermal Anomalies, Earth System Science Data, 10(4), PP. 2015-2031. https://doi.org/10.5194/essd-10-2015-2018.
Efthimiou, N., Psomiadis, E. & Panagos, P., 2020, Fire Severity and Soil Erosion Susceptibility Mapping Using Multi-Temporal Earth Observation Data: The Case of Mati Fatal Wildfire in Eastern Attica, Greece, CATENA, 187(November), P. 104320. https://doi.org/10.1016/j.catena.2019.104320.
Eskandari, S., 2017, A New Approach for Forest Fire Risk Modeling Using Fuzzy AHP and GIS in Hyrcanian Forests of Iran, Arabian Journal of Geosciences, 10(8), P. 190.
Eskandari, S. & Jalilvand, H., 2017, Effect of Weather Changes on Fire Regime of Neka and Behshahr Forests, Iranian Journal of Forest and Range Protection Research, 15(1).
Eskandari, S., Miesel, J.R. & Pourghasemi, H.R., 2020a, The Temporal and Spatial Relationships between Climatic Parameters and Fire Occurrence in Northeastern Iran, Ecological Indicators, 118, P. 106720. https://doi.org/10.1016/j.ecolind.2020.106720.
Eskandari, S., Pourghasemi, H.R. & Tiefenbacher, J.P., 2020a, Relations of Land Cover, Topography, and Climate to Fire Occurrence in Natural Regions of Iran: Applying New Data Mining Techniques for Modeling and Mapping Fire Danger, Forest Ecology and Management, 473, P. 118338. https://doi.org/10.1016/j.foreco.2020.118338.
Esmaeili Sharif, M., Jalilvand, H., Amoozad, M., Jafari, A.A. & Moslemi Sayedmahale, S.M., 2018b, The Effect of Ecological Factors on Fire in Hyrcanian Forests (Case Study: Forest Areas of Neka, Mazandaran, Iran), Forest Research and Development, 4(1 #G00364), PP. 113-129. Retrieved from https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=605779.
FAO, 2010, Global Forest Resource Assessment (FRA) 2010, Country Report, Iran, Food and Agriculture Organization, 42. https://doi.org/ www.fao.org/forestry/fra.
FAO, 2015, Global Forest Resources Assessment 2015, (Iran Report), Forestry Department of FAO, 73. Retrieved from http://www.fao.org/3/ a-au190e.
FAO, 2020, Global Forest Resources Assessment 2020: Main Report, Rome, In FAO. https://doi.org/10.4060/ca9825en.
Filipponi, F., 2019, Exploitation of Sentinel-2 Time Series to Map Burned Areas at the National Level: A Case Study on the 2017 Italy Wildfires, Remote Sensing, 11(6), P. 622. https://doi.org/10.3390/rs11060622.
Filkov, A.I., Duff, T.J. & Penman, T.D., 2019, Frequency of Dynamic Fire Behaviours in Australian Forest Environments, Fire, 3(1), P. 1. https://doi.org/10.3390/fire3010001.
Fox, D.M., Laaroussi, Y., Malkinson, L.D., Maselli, F., Andrieu, J., Bottai, L. & Wittenberg, L., 2016, POSTFIRE: A Model to Map Forest Fire Burn Scar and Estimate Runoff and Soil Erosion Risks, Remote Sensing Applications: Society and Environment, 4, PP. 83-91. https://doi.org/ 10.1016/j.rsase.2016.07.002.
Giglio, L., 2007, Characterization of the Tropical Diurnal Fire Cycle Using VIRS and MODIS Observations, Remote Sensing of Environment, 108(4), PP. 407-421. https://doi.org/10.1016/j.rse.2006.11.018.
Giglio, L., Descloitres, J., Justice, C.O. & Kaufman, Y.J., 2003, An Enhanced Contextual Fire Detection Algorithm for MODIS, Remote Sensing of Environment, 87(2-3), PP. 273-282. https://doi.org/10.1016/ S0034-4257(03)00184-6.
Giglio, L., Csiszar, I. & Justice, C.O., 2006, Global Distribution and Seasonality of Active Fires as Observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Sensors, Journal of Geophysical Research: Bio-geosciences, 111(G2). n/a-n/a. https://doi.org/ 10.1029/2005JG000142.
Giglio, L., Boschetti, L., Roy, D.P., Humber, M.L. & Justice, C.O., 2018, The Collection 6 MODIS Burned Area Mapping Algorithm and Product, Remote Sensing of Environment, 217(March), PP. 72-85. https://doi.org/10.1016/j.rse.2018.08.005.
Gómez, I. & Martín, M.P., 2011, Prototyping an Artificial Neural Network for Burned Area Mapping on a Regional Scale in Mediterranean Areas Using MODIS Images, International Journal of Applied Earth Observation and Geoinformation, 13(5), PP. 741-752. https://doi.org/10.1016/ j.jag.2011.05.002.
Herrando, S. & Brotons, L., 2002, Forest Bird Diversity in Mediterranean Areas Affected by Wildfires: a Multi-Scale Approach, Ecography, 25(2), PP. 161-172. https://doi.org/10.1034/j.1600-0587.2002.250204.x.
Herrando, S., Brotons, L. & Llacuna, S., 2003, Does Fire Increase the Spatial Heterogeneity of Bird Communities in Mediterranean landscapes?, Ibis, 145(2), PP. 307-317. https://doi.org/10.1046/j.1474-919X.2003.00155.x.
Jahdi, R., Salis, M., Alcasena, F.J., Arabi, M., Arca, B. & Duce, P., 2020, Evaluating Landscape-Scale Wildfire Exposure in Northwestern Iran, Natural Hazards, 101(3), PP. 911-932. https://doi.org/10.1007/ s11069-020-03901-4.
Justice, C.O., Vermote, E., Townshend, J.R.G., Defries, R., Roy, D.P., Hall, D.K., … & Barnsley, M.J., 1998, The Moderate Resolution Imaging Spectroradiometer (MODIS): Land Remote Sensing for Global Change Research, IEEE Transactions on Geoscience and Remote Sensing, 36(4), PP. 1228-1249. https://doi.org/10.1109/36.701075.
Justice, C., Giglio, L., Korontzi, S., Owens, J., Morisette, J., Roy, D., … & Kaufman, Y., 2002, The MODIS Fire Products, Remote Sensing of Environment, 83(1-2), PP. 244-262. https://doi.org/10.1016/S0034-4257(02)00076-7.
Karimi, S., Pourbabaei, H. & Khodakarami, Y., 2017, The Effect of Fire on the Flora and Life Forms of Plant Species in Zagros Forests, Kermanshah, Forest and Wood Products, 70(3), PP. 431-440. https://doi.org/ 10.22059/jfwp.2017.206370.740.
Karimi, A., Madadi, M., Abdollahi, S., Ostad-Ali-Askari, K., Eslamian, S. & Singh, V.P., 2019, Determination of Fire Extent in Forest Zones Using Remote Sensing Data Case Study: Golestan Province of Iran, Journal of Geography and Cartography, 2(1). https://doi.org/10.24294/jgc.v2i1.753.
Kurnaz, B., Bayik, C. & Abdikan, S., 2020, Forest Fire Area Detection by Using Landsat-8 and Sentinel-2 Satellite Images: A Case Study in Mugla, Turkey, PP. 1-16.
Lensky, I.M. & Rosenfeld, D., 2008, Clouds-Aerosols-Precipitation Satellite Analysis Tool (CAPSAT), Atmospheric Chemistry and Physics, 8(22), PP. 6739-6753. https://doi.org/10.5194/acp-8-6739-2008.
Liu, S., Zheng, Y., Dalponte, M. & Tong, X., 2020, A Novel Fire Index-Based Burned Area Change Detection Approach Using Landsat-8 OLI Data, European Journal of Remote Sensing, 53(1), PP. 104-112. https://doi.org/10.1080/22797254.2020.1738900.
MacDicken, K., Reams, G. & de Freitas, J., 2015, Introduction to the Changes in Global Forest Resources from 1990 to 2015, Forest Ecology and Management, 352, PP. 1-2. https://doi.org/ 10.1016/j.foreco.2015.06.018.
Mukherjee, J., Mukherjee, J. & Chakravarty, D., 2018, Detection of Coal Seam Fires in Summer Seasons from Landsat 8 OLI/TIRS in Dhanbad, Computer Vision, Pattern Recognition, Image Processing, and Graphics, PP. 529-539. https://doi.org/10.1007/978-981-13-0020-2_46.
Myneni, R., Hoffman, S., Knyazikhin, Y., Privette, J., Glassy, J., Tian, Y., … & Running, S., 2002, Global Products of Vegetation Leaf Area and Fraction Absorbed PAR from Year One of MODIS Data, Remote Sensing of Environment, 83(1-2), PP. 214-231. https://doi.org/10.1016/S0034-4257(02)00074-3.
Oliveira, S., Oehler, F., San-Miguel-Ayanz, J., Camia, A. & Pereira, J.M.C., 2012, Modeling Spatial Patterns of Fire Occurrence in Mediterranean Europe Using Multiple Regression and Random Forest, Forest Ecology and Management, 275, PP. 117-129. https://doi.org/https://doi.org/10.1016/j.foreco.2012.03.003.
Parresol, B.R., Blake, J.I. & Thompson, A.J., 2012, Effects of Overstory Composition and Prescribed Fire on Fuel Loading across a Heterogeneous Managed Landscape in the Southeastern USA, Forest Ecology and Management, 273, PP. 29-42. https://doi.org/ 10.1016/j.foreco.2011.08.003.
Pulvirenti, L., Squicciarino, G., Fiori, E., Fiorucci, P., Ferraris, L., Negro, D., … & Puca, S., 2020, An Automatic Processing Chain for Near Real-Time Mapping of Burned Forest Areas Using Sentinel-2 Data, Remote Sensing, 12(4), P. 674. https://doi.org/10.3390/rs12040674.
Quintano, C., Fernández-Manso, A. & Fernández-Manso, O., 2018, Combination of Landsat and Sentinel-2 MSI Data for Initial Assessing of Burn Severity, International Journal of Applied Earth Observation and Geoinformation, 64(February), PP. 221-225. https://doi.org/10.1016/j.jag.2017.09.014.
Randerson, J.T., Liu, H., Flanner, M.G., Chambers, S.D., Jin, Y., Hess, P.G., … & Zender, C.S., 2006, The Impact of Boreal Forest Fire on Climate Warming, Science, 314(5802), PP. 1130-1132. https://doi.org/10.1126/science.1132075.
Raziei, T., Arasteh, P.D. & Saghafian, B., 2005, Annual Rainfall Trend in Arid and Semi-Arid Regions of Iran, ICID 21st European Regional Conference, PP. 15-19.
Richards, J.A., 1984, Thematic Mapping from Multitemporal Image Data Using the Principal Components Transformation, Remote Sensing of Environment, 16(1), PP. 35-46. https://doi.org/10.1016/0034-4257(84) 90025-7.
Rousta, I., Olafsson, H., Zhang, H., Moniruzzaman, M., Krzyszczak, J. & Baranowski, P., 2020, Anthropogenic Factors Affecting the Vegetation Dynamics in the Arid Middle East, Preprints, (October), PP. 1-21. https://doi.org/10.20944/preprints202010.0208.v2.
Roy, D.P., Boschetti, L., Justice, C.O. & Ju, J., 2008, The Collection 5 MODIS Burned Area Product — Global Evaluation by Comparison with the MODIS Active Fire Product, Remote Sensing of Environment, 112(9), PP. 3690-3707. https://doi.org/10.1016/ j.rse.2008.05.013.
Saboohi, R., Soltani, S. & Khodagholi, M., 2012, Trend Analysis of Temperature Parameters in Iran, Theoretical and Applied Climatology, 109(3-4), PP. 529-547. https://doi.org/10.1007/ s00704-012-0590-5.
Sánchez, J., Bisquert, M., Rubio, E. & Caselles, V., 2015, Impact of Land Cover Change Induced by a Fire Event on the Surface Energy Fluxes Derived from Remote Sensing, Remote Sensing, 7(11), PP. 14899-14915. https://doi.org/10.3390/rs71114899.
Shimada, M., Itoh, T., Motooka, T., Watanabe, M., Shiraishi, T., Thapa, R. & Lucas, R., 2014, New Global Forest/Non-Forest Maps from ALOS PALSAR Data (2007–2010), Remote Sensing of Environment, 155, PP. 13-31. https://doi.org/10.1016/j.rse.2014.04.014.
Skowronski, N.S., Gallagher, M.R. & Warner, T.A., 2020, Decomposing the Interactions between Fire Severity and Canopy Fuel Structure Using Multi-Temporal, Active, and Passive Remote Sensing Approaches, Fire, 3(1), P. 7. https://doi.org/10.3390/ fire3010007.
Smith, A.M.S., Drake, N.A., Wooster, M.J., Hudak, A.T., Holden, Z.A. & Gibbons, C.J., 2007, Production of Landsat ETM+ Reference Imagery of Burned Areas within Southern African Savannahs: Comparison of Methods and Application to MODIS, International Journal of Remote Sensing, 28(12), PP. 2753-2775. https://doi.org/10.1080/ 01431160600954704.
Teodoro, A. & Amaral, A., 2019, A Statistical and Spatial Analysis of Portuguese Forest Fires in Summer 2016 Considering Landsat 8 and Sentinel 2A Data, Environments, 6(3), P. 36. https://doi.org/10.3390/environments 6030036.
Tucker, C.J. & Sellers, P.J., 1986, Satellite Remote Sensing of Primary Production, International Journal of Remote Sensing, 7(11), PP. 1395-1416. https://doi.org/10.1080/ 01431168608948944.
Ulery, A.L., Graham, R.C., Goforth, B.R. & Hubbert, K.R., 2017, Fire Effects on Cation Exchange Capacity of California Forest and Woodland Soils, Geoderma, 286, PP. 125-130. https://doi.org/10.1016/j.geoderma. 2016.10.028.
Van Leeuwen, W., 2008, Monitoring the Effects of Forest Restoration Treatments on Post-Fire Vegetation Recovery with MODIS Multitemporal Data, Sensors, 8(3), PP. 2017-2042. https://doi.org/10.3390/s8032017.
Xie, Y., Sha, Z. & Yu, M., 2008, Remote Sensing Imagery in Vegetation Mapping: A Review, Journal of Plant Ecology, 1(1), PP. 9-23. https://doi.org/10.1093/jpe/rtm005.
Ye, T., Wang, Y., Guo, Z. & Li, Y., 2017, Factor Contribution to Fire Occurrence, Size, and Burn Probability in a Subtropical Coniferous Forest in East China, PLOS ONE, 12(2), P. e0172110. https://doi.org/10.1371/journal.pone.0172110.