Abbaspour, M., Mahiny, A. S., Arjmandy, R., & Naimi, B. (2011). Integrated approach for land use suitability analysis. International Agrophysics, 25(4). bwmeta1.element.agro-babd4e54-f64e-4413-9f46-3df1073f8d02
Abdi Dehkordi, M., Bozorg Haddad, O., & Salavitabar, A. (2020). Investigation of the Karun River Basin Landscape under the Utilization of Development Projects in Study or Implementation Based on the System Dynamics Approach. Iranian Journal of Soil and Water Research. 51 (2), 489-501.
https://doi.org/10.22059/ijswr.2019.284941.668252
Abedi, M., Moghadam, H., Morid, S., Booij, M., and Delavar, M., 2020, Evaluation of ECMWF mid-range ensemble forecasts of precipitation for the Karun River basin: Theoretical and Applied Climatology, 141, 61-70.
https://doi.org/10.1007/s00704-020-03160-0
Alvarado-Aguilar, D., Jiménez, J. A., & Nicholls, R. J. (2012). Flood hazard and damage assessment in the Ebro Delta (NW Mediterranean) to relative sea level rise. Natural Hazards, 62, 1301-1321.
https://doi.org/10.1007/s11069-012-0149-x
Amato, U., Antoniadis, A., De Feis, I., Goude, Y., & Lagache, A. (2021). Forecasting high resolution electricity demand data with additive models including smooth and jagged components. International Journal of Forecasting, 37(1), 171-185.
https://doi.org/10.1016/j.ijforecast.2020.04.001
Amiri, N., Vaissi, S., Aghamir, F., Saberi‐Pirooz, R., Rödder, D., Ebrahimi, E., & Ahmadzadeh, F. (2021). Tracking climate change in the spatial distribution pattern and the phylogeographic structure of Hyrcanian wood frog, Rana pseudodalmatina (Anura: Ranidae). Journal of Zoological Systematics and Evolutionary Research, 59(7), 1604-1619.
https://doi.org/10.1111/jzs.12503
Avand, M., Janizadeh, S., Naghibi, S. A., Pourghasemi, H. R., Khosrobeigi Bozchaloei, S., & Blaschke, T. (2019). A comparative assessment of random forest and k-nearest neighbor classifiers for gully erosion susceptibility mapping. Water, 11(10), 2076.
https://doi.org/10.3390/w11102076
Billa, L., Mansor, S., Mahmud, A. R., & Ghazali, A. H. (2006). Modelling rainfall intensity from NOAA AVHRR data for operational flood forecasting in Malaysia. International Journal of Remote Sensing, 27(23), 5225-5234.
https://doi.org/10.1080/01431160500192603
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
Breiman, L., & Cutler, A. (2001). Random forest. Machine Learning. Statistics Department-University of California, 1, 33.
Brivio, P. A., R. Colombo, M. Maggi, and R. Tomasoni (2002). Integration of remote sensing data and GIS for accurate mapping of flooded areas. International Journal of Remote Sensing , 23 (3), 429-441.
https://doi.org/10.1080/01431160010014729
Caballero, G. R., Platzeck, G., Pezzola, A., Casella, A., Winschel, C., Silva, S. S., Delegido, J. (2020). Assessment of multi-date Sentinel-1 polarizations and GLCM texture features capacity for onion and sunflower classification in an irrigated valley: an object level approach. Agronomy, 10(6), 845.
https://doi.org/10.3390/agronomy10060845
Cao, H., Zhang, H., Wang, C., & Zhang, B. (2019). Operational flood detection using Sentinel-1 SAR data over large areas. Water, 11(4), 786.
https://doi.org/10.3390/w11040786
Carreño Conde, F., & De Mata Muñoz, M. (2019). Flood monitoring based on the study of Sentinel-1 SAR images: The Ebro River case study. Water, 11(12), 2454.
https://doi.org/10.3390/w11122454
Cavender-Bares, J., Schneider, F. D., Santos, M. J., Armstrong, A., Carnaval, A., Dahlin, K. M., ... & Wilson, A. M. (2022). Integrating remote sensing with ecology and evolution to advance biodiversity conservation. Nature Ecology & Evolution, 6(5), 506-519.
https://doi.org/10.1038/s41559-022-01702-5
Chapi, K., Singh, V. P., Shirzadi, A., Shahabi, H., Bui, D. T., Pham, B. T., & Khosravi, K. (2017). A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environmental modelling & software, 95, 229-245.
https://doi.org/10.1016/j.envsoft.2017.06.012
Chen, W., Li, Y., Xue, W., Shahabi, H., Li, S., Hong, H., ... & Ahmad, B. B. (2020). Modeling flood susceptibility using data-driven approaches of naïve bayes tree, alternating decision tree, and random forest methods. Science of The Total Environment, 701, 134979.
https://doi.org/10.1016/j.scitotenv.2019.134979
Clement, M. A., Kilsby, C. G., & Moore, P. (2018). Multi‐temporal synthetic aperture radar flood mapping using change detection. Journal of Flood Risk Management, 11(2), 152-168.
https://doi.org/10.1111/jfr3.12303
Ebrahimi, E., Ranjbaran, Y., Sayahnia, R., & Ahmadzadeh, F. (2022). Assessing the climate change effects on the distribution pattern of the Azerbaijan Mountain Newt (Neurergus crocatus). Ecological Complexity, 50, 100997.
https://doi.org/10.1016/j.ecocom.2022.100997
ESA, ESA’s radar observatory mission for GMES operational services, vol. 1, no. sp-1322/1. 2012.
Fechter, D., & Storch, I. (2014). How many wolves (Canis lupus) fit into Germany? The role of assumptions in predictive rule-based habitat models for habitat generalists. PloS one, 9(7), e101798.
https://doi.org/10.1371/journal.pone.0101798
Friedman, J. H. (1991). Multivariate Adaptive Regression Splines. The annals of statistics, 19(1), 1-67.
Garcia, C. A., Savilaakso, S., Verburg, R. W., Stoudmann, N., Fernbach, P., Sloman, S. A., ... & Waeber, P. O. Strategy games to improve environmental policymaking. Nat Sustain
5, 464–471 (2022).
https://doi.org/10.1038/s41893-022-00881-0
Gayen, A., Pourghasemi, H. R., Saha, S., Keesstra, S. & Bai, S. Gully erosion susceptibility assessment and management of hazardprone areas in India using diferent machine learning algorithms. Science of The Total Environment. 668, 124–138 (2019).
https://doi.org/10.1016/j.scitotenv.2019.02.436
Gayen, A., Pourghasemi, H. R., Saha, S., Keesstra, S., & Bai, S. (2019). Gully erosion susceptibility assessment and management of hazard-prone areas in India using different machine learning algorithms. Science of The Total Environment, 668, 124-138.
https://doi.org/10.1016/j.scitotenv.2019.02.328
Ghayoumi, R., & Ebrahimi, E. (2020). Predicting the potential distribution of Avicennia marina across mangrove forest area in Southern Iran using Biochemical datase. Journal of Oceanography, 10(40), 55-63.
http://joc.inio.ac.ir/article-1-1530-en.html
Ghayoumi, R., Ebrahimi, E., & Mousavi, S. M. (2022). Dynamics of mangrove forest distribution changes in Iran. Journal of Water and Climate Change, 13(6), 2479-2489.
https://doi.org/10.2166/wcc.2022.069
Ghyoumi, R., Ebrahimi, E., Hosseini, F., Hosseini Taifeh, M., Kashtkar, M. (2019). Predicting the Effects of Climate Changes on the Distribution of Mangrove Forests in Iran Using Maximum Entropy Model, Remote Sensing, and Geographic Information System in Natural Resources. Journal of Remote Sensing & GIS in Natural Resources, 10(2), 34-47.
http://dorl.net/dor/20.1001.1.26767082.1398.10.2.3.2
Goetz, J. N., Guthrie, R. H., & Brenning, A. (2011). Integrating physical and empirical landslide susceptibility models using generalized additive models. Geomorphology, 129(3-4), 376-386.
https://doi.org/10.1016/j.geomorph.2011.03.001
Gunn, S. R. (1998). Support vector machines for classification and regression. ISIS technical report, 14(1), 5-16.
Hammami, S., Zouhri, L., Souissi, D., Souei, A., Zghibi, A., Marzougui, A., & Dlala, M. (2019). Application of the GIS based multi-criteria decision analysis and analytical hierarchy process (AHP) in the flood susceptibility mapping (Tunisia). Arabian Journal of Geosciences, 12(21), 1-16.
https://doi.org/10.1007/s12517-019-4754-9
Hill, D. J., Minsker, B. S. (2010). Anomaly detection in streaming environmental sensor data: A data-driven modeling approach. Environmental Modelling & Software, 25(9), 1014-1022.
https://doi.org/10.1016/j.envsoft.2009.08.010
Horritt, M. S., Mason, D. C., & Luckman, A. J. (2001). Flood boundary delineation from synthetic aperture radar imagery using a statistical active contour model. International Journal of Remote Sensing, 22(13), 2489-2507.
https://doi.org/10.1080/01431160116902
Hosseinalizadeh, M., Kariminejad, N., Rahmati, O., Keesstra, S., Alinejad, M., & Behbahani, A. M. (2019). How can statistical and artificial intelligence approaches predict piping erosion susceptibility?. Science of the Total Environment, 646, 1554-1566.
https://doi.org/10.1016/j.scitotenv.2018.07.368
Huang, X., Tan, H., Zhou, J., Yang, T., Benjamin, A., Wen, S. W., ... & Li, X. (2008). Flood hazard in Hunan province of China: an economic loss analysis. Natural Hazards, 47, 65-73.
https://doi.org/10.1007/s11069-007-9197-z
Ilanloo, S. S., Ebrahimi, E., Valizadegan, N., Ashrafi, S., Rezaei, H. R., & Yousefi, M. (2020). Little owl (Athene noctua) around human settlements and agricultural lands: Conservation and management enlightenments. Acta Ecologica Sinica, 40(5), 347-352.
https://doi.org/10.1016/j.chnaes.2020.06.001
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: Springer.
Kalantari, Z., Ferreira, C. S. S., Koutsouris, A. J., Ahlmer, A. K., Cerdà, A., & Destouni, G. (2019). Assessing flood probability for transportation infrastructure based on catchment characteristics, sediment connectivity and remotely sensed soil moisture. Science of the total environment, 661, 393-406.
https://doi.org/10.1016/j.scitotenv.2019.01.009
Kapur, J. N., Sahoo, P. K., Wong, A. K. (1985). A new method for gray-level picture thresholding using the entropy of the histogram. Computer vision, graphics, and image processing, 29(3), 273-285.
https://doi.org/10.1016/0734-189X(85)90125-2
Kourgialas, N. N., & Karatzas, G. P. (2011). Flood management and a GIS modelling method to assess flood-hazard areas—a case study. Hydrological Sciences Journal–Journal des Sciences Hydrologiques, 56(2), 212-225.
https://doi.org/10.1080/02626667.2011.555836
Kussul, N. Shelestov, A. and Skakun, S. 2011. Flood monitoring from SAR data. In: Use of Satellite and In-Situ Data to Improve Sustainability. Springer, Dordrecht. pp. 19-29.
https://doi.org/10.1007/978-90-481-9618-0_3
Markantonis, V., Meyer, V., & Lienhoop, N. (2013). Evaluation of the environmental impacts of extreme floods in the Evros River basin using Contingent Valuation Method. Natural hazards, 69, 1535-1549. https://doi.org/10.1007/s11069-013-0762-3
Martínez-López, J., Martínez-Fernández, J., Naimi, B., Carreno, M. F., & Esteve, M. A. (2015). An open-source spatio-dynamic wetland model of plant community responses to hydrological pressures. Ecological Modelling, 306, 326-333.
https://doi.org/10.1016/j.ecolmodel.2014.11.024
Matgen, P., Henry, J. B., Pappenberger, F., Pfister, L., De Fraipont, P., & Hoffmann, L. (2004). Uncertainty in calibrating flood propagation models with flood boundaries derived from synthetic aperture radar imagery. Proc. 20th Congr. Int. Soc. Photogramm. Remote Sens., Istanbul, Turkey, 352-358.
McCullagh, P., & Nelder, J. A. (1989). Generalized linear models, volume 37 of. Monographs on statistics and applied probability, 37.
Mohammadi, S., Ebrahimi, E., Shahriari Moghadam, M., & Bosso, L. (2019). Modelling current and future potential distributions of two desert jerboas under climate change in Iran. Ecol Inf, 52: 7–13.
https://doi.org/10.1016/j.ecoinf.2019.04.003
Nachappa, T. G., Piralilou, S. T., Gholamnia, K., Ghorbanzadeh, O., Rahmati, O., & Blaschke, T. (2020). Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory. Journal of hydrology, 590, 125275. https://doi.org/10.1016/j.jhydrol.2020.125275
Naimi, B., & Araújo, M. B. (2016). sdm: a reproducible and extensible R platform for species distribution modelling. Ecography, 39(4), 368-375.
https://doi.org/10.1111/ecog.01881
Ozdemir, A., & Altural, T. (2013). A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. Journal of Asian Earth Sciences, 64, 180-197.
https://doi.org/10.1016/j.jseaes.2012.12.014
Radhika, K. R., Sekhar, G. N., & Venkatesha, M. K. (2009, April). Pattern recognition techniques in on-line hand written signature verification-A survey. In 2009 International Conference on Multimedia Computing and Systems (pp. 216-221). IEEE.
https://doi.org/10.1109/MMCS.2009.5256701
Rastmanesh, F., Barati-haghighi, T., and Zarasvandi, A., 2020, Assessment of the impact of 2019 Karun River flood on river sediment in Ahvaz city area, Iran. Environmental Monitoring and Assessment, 192,
https://doi.org/10.1007/s10661-020-08607-5
Rozalis, S., Morin, E., Yair, Y., & Price, C. (2010). Flash flood prediction using an uncalibrated hydrological model and radar rainfall data in a Mediterranean watershed under changing hydrological conditions. Journal of Hydrology, 394, 245255.
https://doi.org/10.1016/j.jhydrol.2010.03.021
Sayedain, S. A., Maghsoudi, Y., & Eini-Zinab, S. (2020). Assessing the use of cross-orbit Sentinel-1 images in land cover classification. International Journal of Remote Sensing, 41(20), 7801-7819.
https://doi.org/10.1080/01431161.2020.1763512
Schumann, G., Di Baldassarre, G., Bates, P. D. (2009). The utility of spaceborne radar to render flood inundation maps based on multialgorithm ensembles. IEEE Transactions on Geoscience and Remote Sensing, 47(8), 2801-2807.
https://doi.org/10.1109/TGRS.2009.2017937
Shafizadeh-Moghadam, H., Valavi, R., Shahabi, H., Chapi, K., & Shirzadi, A. (2018). Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping. Journal of environmental management, 217, 1-11.
https://doi.org/10.1016/j.jenvman.2018.03.089
Shahabi, H. et al. A semi-automated object-based gully networks detection using diferent machine learning models: A case study of Bowen catchment, Queensland, Australia. Sensors (Switzerland) 19, 4893 (2019).
https://doi.org/10.3390/s19224893
Sheykhi Ilanloo, S., Khani, A., Kafash, A., Valizadegan, N., Ashrafi, S., Loercher, F., Ebrahimi, E., Yousefi, M. (2021). Applying opportunistic observations to model current and future suitability of the Kopet Dagh Mountains for a Near Threatened avian scavenger. Avian Biology Research, 14(1), 18-26.
https://doi.org/10.1177/1758155920962750
Tayfehrostami, A., Azmoudeh Ardalan, A. R., Roohi, S., & Pourmina, A. H. (2021). Dams Surface Area Monitoring from VV and VH Polarization of Sentinel-1 Mission SAR Images (Case study: Doroudzan Dam, Shiraz, Iran). Journal of Geomatics Science and Technology, 10(4), 103-116.
http://jgst.issgeac.ir/article-1-988-en.html
Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2013). Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. Journal of hydrology, 504, 69-79.
https://doi.org/10.1016/j.jhydrol.2013.09.034
Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2015). Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method. Stochastic environmental research and risk assessment, 29(4), 1149-1165.
https://doi.org/10.1007/s00477-015-1021-9
Thorup, K., Pedersen, L., Da Fonseca, R. R., Naimi, B., Nogués-Bravo, D., Krapp, M., ... & Rahbek, C. (2021). Response of an Afro-Palearctic bird migrant to glaciation cycles. Proceedings of the National Academy of Sciences, 118(52), e2023836118.
https://doi.org/10.1073/pnas.2023836118
Wang, S. S. Y., Kim, H., Coumou, D., Yoon, J. H., Zhao, L., & Gillies, R. R. (2019). Consecutive extreme flooding and heat wave in Japan: Are they becoming a norm?. Atmospheric Science Letter.
https://doi.org/10.1002/asl.933
Yokoya, N., Chan, J. C. W., & Segl, K. (2016). Potential of resolution-enhanced hyperspectral data for mineral mapping using simulated EnMAP and Sentinel-2 images. Remote Sensing, 8(3), 172.
https://doi.org/10.3390/rs8030172
Yommy, A.S. Liu, R. and Wu, S. 2015. SAR image despeckling using refined Lee filter. In 2015 7th IEEE International Conference on Intelligent Human Machine Systems and Cyberneticsh. pp. 260-265.
https://doi.org/10.1109/IHMSC.2015.236
Yousefi, S., Pourghasemi, H. R., Emami, S. N., Rahmati, O., Tavangar, S., Pouyan, S., ... & Nekoeimehr, M. (2020). Assessing the susceptibility of schools to flood events in Iran. Scientific reports, 10(1), 18114.
https://doi.org/10.1038/s41598-020-75291-3