Beurs, K.M., & Henebry, G.M., 2010. Spatio-temporal statistical methods for modelling land surface phenology. In I.L. Hudson & M.R. Keatley (Eds). Phenological research, 177-208. https://doi.org/10.1007/978-90-481-3335-2_9.
Brown, M.E., De Beurs, K., Vrieling, A., 2010.
The response of African land surface phenology to large scale climate oscillations.
Remote Sensing of Environment. 114, 2286–2296.
https://doi.org/10.1016/j.rse.2010.05.005.
Cai, Z., Jönsson, P., Jin, H., & Eklundh, L., 2017.
Performance of smoothing methods for reconstructing NDVI time-series and estimating vegetation phenology from MODIS data.
Remote Sensing,
9(12), 1271.
https://doi.org/10.3390/rs9121271.
Cai, Y.; Lin, H. and Zhang, M. (2019).
Mapping paddy rice by the object-based random forest method using time series Sentinel-1/Sentinel-2 data.
Advances in Space Research, 64(11): 2233-2244.
https://doi.org/10.1016/j.asr.2019.08.042.
Cai, Y., Li, X., Zhang, M., & Lin, H., 2020.
Mapping wetland using the object-based stacked generalization method based on multi-temporal optical and SAR data.
International Journal of Applied Earth Observation and Geoinformation, 92, 102164.
https://doi.org/10.1016/j.jag.2020.102164.
Chang, Q., Xiao, X., Jiao, W., Wu, X., Doughty, R., Wang, J., Du, L., Zou, Z., Qin, Y., 2019.
Assessing consistency of spring phenology of snow covered forests as estimated by vegetation indices, gross primary production, and solar induced chlorophyll fluorescence.
Agric. For. Meteorol. 275, 305–316.
https://doi.org/10.1016/j.agrformet.2019.06.002.
Chen, G.; Li, X.; Liu, X.; Chen, Y.; Liang, X.; Leng, J.; Xu, X.; Liao, W.; Qiu, Y.a.; Wu, Q., 2020. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 2020, 11. https://doi.org/10.1038/s41467-020-14386-x.
Cook, B.I.; Wolkovich, E.M.; Parmesan, C., 2012.
Divergent responses to spring and winter warming drive community level flowering trends.
Proc. Natl. Acad. Sci. USA 2012,
109, 9000–9005.
https://doi.org/10.1073/pnas.1118364109.
Cohen, W. B.; Yang, Z. G. and Kennedy, R., 201(.
Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and validation.
Remote Sensing of Environment, 114: 2911-2924.
https://doi.org/10.1016/j.rse.2010.07.010.
Da Silva, A., Valcu, M., Kempenaers, B., 2015.
Light pollution alters the phenology of dawn and dusk singing in common European songbirds. Philos. Trans. R. Soc. B Biol. Sci. 370, 1–9.
https://doi.org/10.1098/rstb.2014.0126.
Dahlin, K.M., Fisher, R.A., Lawrence, P.J., 2015. Environmental drivers of drought deciduous phenology in the Community Land Model. Biogeosciences 12, 5061–5074. https://doi.org/10.5194/bg-12-5061-2015, 2015.
Fisher, J.I., Mustard, J.F., Vadeboncoeur, M.A., 2006.
Green leaf phenology at Landsat resolution: scaling from the field to the satellite.
Remote Sensing of Environment. 100, 265–279.
https://doi.org/10.1016/j.rse.2005.10.022.
Foroughi, H., Naseri, A. A., Boroomand Nasab, S., Hamzeh, S., Sadeghi, M., Tuller, M., & Jones, S. B., 2020.
A new mathematical formulation for remote sensing of soil moisture based on the Red-NIR space. International Journal of Remote Sensing, 41(20), 8034–8047.
https://doi.org/10.1080/01431161.2020.1770365.
Fu, Y. H., Zhao, H., Piao, S., Peaucelle, M., Peng, S., Zhou, G., ... & Janssens, I. A., 2015. Declining global warming effects on the phenology of spring leaf unfolding. Nature, 526(7571), 104-107. https://doi.org/10.1038/nature15402.
Ganguly, S., Friedl, M.A., Tan, B., Zhang, X., Verma, M., 2010.
Land surface phenology from MODIS: characterization of the Collection 5 global land cover dynamics product.
Remote Sensing of Environment. 114, 1805–1816.
https://doi.org/10.1016/j.rse.2010.04.005.
Huang, K., Zhang, Y., Tagesson, T., Brandt, M., Wang, L., Chen, N., ... & Fensholt, R., 2021.
The confounding effect of snow cover on assessing spring phenology from space: A new look at trends on the Tibetan Plateau.
Science of the Total Environment, 756, 144011.
https://doi.org/10.1016/j.scitotenv.2020.144011.
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G., 2002.
Overview of the radiometric and biophysical performance of the MODIS vegetation indices.
Remote Sensing of Environment, 83(1–2), 195–213.
https://doi.org/10.1016/S0034-4257(02)00096-2.
Imhoff, M.L., Zhang, P., Wolfe, R.E., Bounoua, L., 2010.
Remote sensing of the urban heat island effect across biomes in the continental USA.
Remote Sensing of Environment. 114, 504–513.
https://doi.org/10.1016/j.rse.2009.10.008.
Masihpoor, M; datvish sefat, A A; rahmani, R; and fatehi, P., 2021. “Phenological Parameters Trend of the Southern Zagros Forests Based on MODIS-NDVI Time Series during 2000-2017.” IRANIAN JOURNAL OF FOREST 12 (4 #a001336): 577–90.
Melaas, E.K., Friedl, M.A., Zhu, Z., 2013.
Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM + data.
Remote Sensing of Environment. 132, 176–185.
https://doi.org/10.1016/j.rse.2013.01.011.
Menzel, A.; Sparks, T.H.; Estrella, N.; Koch, E.; Aasa, A.; Ahas, R.; Alm-Kübler, K.; Bissolli, P.; Braslavská, O.g.; Briede, A., 2006.
European phenological response to climate change matches the warming pattern.
Global Chang. Biol. 2006,
12, 1969–1976.
https://doi.org/10.1111/j.1365-2486.2006.01193.x.
Nagendra, H.; Bai, X.; Brondizio, E.S.; Lwasa, S., 2018. The urban south and the predicament of global sustainability. Nat. Sustain. 2018, 1, 341–349. https://doi.org/10.1038/s41893-018-0101-5.
Neil, K., Wu, J., 2006. Effects of urbanization on plant flowering phenology: a review. Urban Ecosyst. 9, 243–257. https://doi.org/10.1007/s11252-006-9354-2.
Peñuelas, J., Rutishauser, T., & Filella, I., 2009.
Phenology feedbacks on climate change.
Science,
324(5929), 887-888.
DOI: 10.1126/science.117300.
Piao, S., Ciais, P., Friedlingstein, P., Peylin, P., Reichstein, M., Luyssaert, S., ... & Vesala, T., 2008. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 451(7174), 49-52. https://doi.org/10.1038/nature06444.
Li, X., Gong, P., 2016.
An “exclusion-inclusion” framework for extracting human settlements in rapidly developing regions of China from Landsat images.
Remote Sensing of Environment. 186, 286–296.
https://doi.org/10.1016/j.rse.2016.08.029.
Li, X., Yu, L., Xu, Y., Yang, J., Gong, P., 2016a. Ten years after Hurricane Katrina: monitoring recovery in New Orleans and the surrounding areas using remote sensing. Sci. Bull. 61, 1460–1470. https://doi.org/10.1007/s11434-016-1167-y.
Li, X., Zhou, Y., Asrar, G.R., Mao, J., Li, X., Li, W., 2016b. Response of vegetation phenology to urbanization in the conterminous United States. Glob. Chang. Biol. 23.
Luo, Z., Sun, O.J., Ge, Q., Xu, W., Zheng, J., 2006. Phenological responses of plants to climate change in an urban environment. Ecol. Res. 22, 507–514. https://doi.org/10.1007/s11284-006-0044-6.
Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M., 2013.
Climate change, phenology, and phonological control of vegetation feedbacks to the climate system.
Agr. Forest Meteorol. 2013,
169, 156–173
. https://doi.org/10.1016/j.agrformet.2012.09.012.
Sharif, M., & Attarchi, S. (2024).
Investigating the effect of temperature, precipitation, and soil salinity changes on Riparian Forests’ phenology using a remote sensing approach.
Remote Sensing Applications: Society and Environment, 101194.
https://doi.org/10.1016/j.rsase.2024.101194.
Sharif, M., Attarchi, S., & A.Kakroodi, A., 2022. Investigating the phenology changes of three plant species in different ecosystems using radar and optical data. Physical Geography Research Quarterly, 54(1), 111–133. doi: 10.22059/jphgr.2022.334134.1007658.
Sharif, M., A. Kakroodi, A., Heidari, S., & Kiani, A. (2023). Monitoring fifty-year changes in riparian forests of Gotvand County, Iran, using remote sensing images. Iranian Journal of Forest and Poplar Research, 31(3), 203-224. doi: 10.22092/ijfpr.2023.362063.2098
Wang, Jie, Xiangming Xiao, Yuanwei Qin, Jinwei Dong, Geli Zhang, and Weili Kou., 2015. “Mapping Paddy Rice Planting Area in Wheat-Rice Double-Cropped Areas through Integration of Landsat-8 OLI, MODIS, and PALSAR Images.” Nature Publishing Group (March):1–11. https://doi.org/10.1038/srep10088.
Wu, C., Peng, D., Soudani, K., Siebicke, L., Gough, C. M., Arain, M. A., ... & Ge, Q., 2017.
Land surface phenology derived from normalized difference vegetation index (NDVI) at global FLUXNET sites.
Agricultural and Forest Meteorology, 233, 171-182.
https://doi.org/10.1016/j.agrformet.2016.11.193 .
Sajadi, P.; Sang, Y.-F.; Gholamnia, M.; Bonafoni, S.; Brocca, L.; Pradhan, B.; Singh, A., 2021.
Performance Evaluation of Long NDVI Timeseries from AVHRR, MODIS and Landsat Sensors over Landslide-Prone Locations in Qinghai-Tibetan Plateau.
Remote Sens. 13, 3172.
https://doi.org/10.3390/rs13163172.
Zhang, G.J., Cai, M., Hu, A., 2013. Energy consumption and the unexplained winter warming over northern Asia and North America. Nat. Clim. Chang. 3, 466–470. Zhang, X., Friedl, M.A., Schaaf, C.B., 2006. https://doi.org/10.1038/nclimate1803.
Zhang, X., Friedl, M.A., Schaaf, C.B., Strahler, A.H., 2004a.
Climate controls on vegetation phenological patterns in northern mid-and high latitudes inferred from MODIS data.
Glob. Chang. Biol. 10, 1133–1145.
https://doi.org/10.1111/j.1529-8817.2003.00784.x.
Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C., Gao, F., ... & Huete, A., 2003.
Monitoring vegetation phenology using MODIS.
Remote sensing of environment,
84(3), 471-475.
https://doi.org/10.1016/S0034-4257(02)00135-9.
Zhou, Y., Gurney, K., 2010.
A new methodology for quantifying on-site residential and commercial fossil fuel CO2 emissions at the building spatial scale and hourly time scale.
Carbon Manage. 1, 45–56.
https://doi.org/10.4155/cmt.10.7.
Zhou, Y., Smith, S. J., Zhao, K., Imhoff, M., Thomson, A., Bond-Lamberty, B., ... & Elvidge, C. D., 2015.
A global map of urban extent from nightlights. Environmental Research Letters,
10(5), 054011.
https://doi.org/10.1088/1748-9326/10/5/054011.