پایش روند تغییرات چرخۀ فنولوژیکی گیاهان در شهر اهواز با استفاده از تصاویر سنجش‌ازدور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد، رشتة سنجش‌ازدور و GIS، دانشکدة جغرافیا، دانشگاه تهران، تهران، ایران

2 استادیار و عضو هیئت علمی گروه سنجش‌ازدور و GIS، دانشکدة جغرافیا، دانشگاه تهران، تهران، ایران

چکیده

سابقه و هدف: فنولوژی گیاهان نقش مهمی در اکوسیستم‌های گیاهی ایفا می‌کند و شاخصی مهم در تغییرات بوم‌شناختی به شمار می‌رود. با توجه به گسترش شهرنشینی، فضای سبز شهری گاهی نقشی حیاتی در این مناطق مسکونی دارد. ازطرف‌دیگر، استفاده از گیاهان در سطح شهرها و خدمات فضای سبزی که آنها ارائه می‌دهند، توجه زیادی را هم در سطح عمومی و هم در مطالعات جدید به خود جلب کرده است. ارزش فضای سبز شهری به‌دلیل مزایای متعدد آن برای سلامتی انسان و محیط بوم‌شناختی شهرها حائز اهمیت است. ازاین‌رو، با توجه به اهمیت نقش گیاهان در اکوسیستم شهری و نقش آن در سلامت جامعه، مطالعه و پایش چرخة‌‌ فنولوژیکی گیاهان در فصل‌های مختلف سال در مناطق شهری در مقیاس‌های مکانی زمانی مختلف ضروری است.
مواد و روش‌ها: در این پژوهش، با استفاده از دو شاخص پرکاربرد NDVI و EVI محاسبه‌شده از تصاویر سنجندة OLI ماهوارة لندست-8 و تصاویر محصول MOD13Q1 سنجندة مودیس ماهوارة ترا، چرخة‌‌ فنولوژی گیاهان در سطح کلان‌شهر اهواز در دورة زمانی 2015 تا دسامبر 2019 تحلیل شد. تصاویر ماهواره‌ای از طریق پلتفرم گوگل ارت انجین فراخوانی و تهیه شد. سپس، با توجه به نوع پوشش گیاهی، چرخة‌‌ فنولوژیکی گیاهان براساس شاخص‌های پوشش گیاهی به دست آمد و با چرخة‌‌ فنولوژیکی به‌دست‌آمده از بررسی‌‌های زمینی مقایسه شد. با توجه به احتمال وجود نویز و پیکسل‌هایی با اختلاط طیفی، برای هموارسازی چرخة‌‌ فنولوژیکی گیاهان از فیلتر Savitzky–Golay استفاده شد.
نتایج: نتایج به‌دست‌آمده حاکی از روند افزایش مقادیر هر دو شاخص NDVI و EVI به‌ترتیب با 03/0 و 04/0 در سنجندة OLI و 01/0 (در سال) در محصول سنجندة مودیس است. این تغییرات در ماه‌های ژانویه، مارس، اکتبر، نوامبر و دسامبر در هر دو سنجنده افزایشی بوده است که به‌معنای شرایط بهتر زیستی گیاه است. زمان دوره‌های فنولوژی گیاهان در هر دو سنجنده متفاوت بود. بیشترین اختلاف در هر دو سنجنده در سال‌های 2018 و 2019 مشاهده شد. با توجه به مناسب‌‌تر بودن شرایط محیطی در این دو سال در مقایسه با سایر سال‌‌ها، می‌‌توان نتیجه گرفت که با افزایش میزان کلروفیل گیاه، میزان اختلاف بین نتایج این دو سنجنده بیشتر می‌شود. دوره‌های انتقال فصل رشد به‌دست‌آمده از سنجندة OLI جزئیات بیشتری را در مقایسه با مجموعه داده‌های با وضوح متوسط مودیس نشان داد. در سنجندة مودیس در مقایسه با سنجندة OLI زمان شروع دوره‌‌های فصل رشد، زودتر بود. این تفاوت‌ها گویای تغییرات بیشتر پوشش گیاهی است که استفاده از تصاویر با قدرت تفکیک بالا قابلیت تشخیص بهتری نسبت به سنجنده‌های با قدرت تفکیک مکانی متوسط و پایین دارند. به‌طور کلی، نتایج قابل قبولی از تغییرات چرخة‌‌ فنولوژیکی گیاهان در سطح یک منطقه شهری با انواع مختلف پدیده‌های زمینی که سبب ناهمگنی بیشتر در پیکسل‌های تصاویر سنجنده‌های ماهواره‌ای می‌شود، مشاهده شد.
نتیجه‌گیری: نتایج مقایسة دوره‌های فصل رشد در سنجندة OLI و مودیس (به‌ترتیب) با واقعیت زمینی نشان می‌‌دهد کمترین اختلاف در شروع فصل رشد با 7 و 10 روز بوده است. بیشترین اختلاف بین نتایج به‌دست‌آمده از سنجنده‌‌های OLI و مودیس (به‌ترتیب) با واقعیت زمینی در اوج فصل رشد با 20 و 35 روز و پایان فصل رشد 20 روز دیرتر و 20 زودتر بوده است. طول فصل رشد در سنجندة مودیس حدود چهار ماه و در سنجندة OLI حدود پنج ماه مشاهده شد که نتایج لندست به واقعیت زمینی نزدیک‌تر است. این تفاوت را می‌‌توان به افزایش تعداد پیکسل‌های مخلوط با توجه به قدرت تفکیک مکانی تصاویر سنجندة مودیس نسبت داد. نتایج این پژوهش، می‌‌تواند راهگشای بررسی تغییرات چرخه‌‌‌‌‌های فنولوژیکی در پاسخ به تغییرات محیطی با استفاده از تصاویر سنجش‌‌از‌‌دور در مناطق شهری باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Monitoring the changes of vegetation phenological cycles in Ahvaz city using remote sensing images

نویسندگان [English]

  • Morteza Sharif 1
  • Sara Attarchi 2
1 1. MSc. Graduate, Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Tehran, Iran
2 Assistant professor, University of Tehran, Faculty of Geography, Department of Remote Sensing and GIS, Tehran, Iran
چکیده [English]

Introduction: Plant phenology plays an important role in plant ecosystems and serves as a key indicator of ecological changes. With the expansion of urbanization, urban green spaces have become increasingly important in residential areas. On the other hand, The use of plants in urban settings and the green space services they provide have garnered significant attention in recent studies. The value of urban green spaces has been recognized for their numerous benefits to human health and the ecological environment of cities. Therefore, it is essential to study and monitor the phenological cycles of plants in urban areas at various spatial-temporal scales, considering their pivotal role in the urban ecosystem and society health.
Materials and methods: This study utilized the widely used NDVI and EVI indices calculated from Landsat satellite OLI sensor and MOD13Q1 product of MODIS sensor images to investigate the plant phenology cycle in the Ahvaz metropolitan area from 2015 to December 2019. Satellite images were retrieved and processed using the Google Earth Engine platform. The phenological cycle of plants was obtained based on the vegetation indices, categorized according to vegetation type and compared with the phenological cycle obtained from the ground survey data. Due to probability noise and pixels with spectral mixing, a Savitzky-Golay filter was applied to smooth the phenological cycle of plants.
Results and discussion: The results indicate the increasing trend in the values of both NDVI and EVI indices annually, with a rise of 0.03 and 0.04 in the OLI sensor and 0.01 in the MOD13Q1 product, respectively. These positive changes were particularly noticeable in January, March, October, November, and December for both sensors. Variations in plant phenology phases were observed between the two sensors, with the most significant differences occurring in 2018 and 2019. This shows that under favorable weather conditions, there is an increase in plant chlorophyll content, leading to disparities between the results of the two sensors. The transition periods of the growing season identified by the OLI sensor exhibited more detail compared to the MODIS medium resolution dataset. Although the MODIS sensor indicated an earlier start to the growing season than the OLI sensor, the shape of the phenological cycle curves from both sensors appeared similar despite discrepancies in their start and end dates.
Generally, according to the MODIS product, the duration of the growing season (between mid-winter and early summer) is approximately four months. These disparities point to more changes in vegetation that can be better detected using high-resolution images compared to sensors with medium and low spatial resolution. Overall, significant changes in the phenological cycle of plants were observed at the urban area level, reflecting various ground phenomena that contribute to increased heterogeneity in satellite sensor image pixels.
Conclusion: The smallest difference between the periods of the growing season of plants observed by ground observations in OLI and MODIS sensors was 7 and 10 days for the Start of Growing Season (SOS), respectively. The largest difference was noted at the peak of the growing season, with disparities of 20 and 35 days, and for the End of Growing Season (EOS), 20 days later and 20 days earlier, respectively, based on ground observations. However, the length of the growing season (LOS) in the OLI sensor is approximately five months, indicating closer alignment with ground observations. This divergence is attributed to increased heterogeneous conditions in the target phenomena and/or the spatial resolution of MODIS sensor images.
it is evident that the results obtained from the OLI sensor enhance our understanding of human interactions with the natural environment in urban areas. Addressing these findings in future studies can help mitigate environmental challenges and provide more accurate information for planning purposes.

کلیدواژه‌ها [English]

  • MODIS
  • SOS
  • EOS
  • OLI
  • EV
Beurs, K.M., & Henebry, G.M., 2010. Spatio-temporal statistical methods for modelling land surface phenology. In I.L. Hudson & M.R. Keatley (Eds). Phenological research, 177-208. https://doi.org/10.1007/978-90-481-3335-2_9.
Brown, M.E., De Beurs, K., Vrieling, A., 2010. The response of African land surface phenology to large scale climate oscillations. Remote Sensing of Environment. 114, 2286–2296. https://doi.org/10.1016/j.rse.2010.05.005.
Cai, Z., Jönsson, P., Jin, H., & Eklundh, L., 2017. Performance of smoothing methods for reconstructing NDVI time-series and estimating vegetation phenology from MODIS data. Remote Sensing, 9(12), 1271. https://doi.org/10.3390/rs9121271.
Cai, Y.; Lin, H. and Zhang, M. (2019). Mapping paddy rice by the object-based random forest method using time series Sentinel-1/Sentinel-2 data. Advances in Space Research, 64(11): 2233-2244. https://doi.org/10.1016/j.asr.2019.08.042.
Cai, Y., Li, X., Zhang, M., & Lin, H., 2020. Mapping wetland using the object-based stacked generalization method based on multi-temporal optical and SAR data. International Journal of Applied Earth Observation and Geoinformation, 92, 102164. https://doi.org/10.1016/j.jag.2020.102164.
Chang, Q., Xiao, X., Jiao, W., Wu, X., Doughty, R., Wang, J., Du, L., Zou, Z., Qin, Y., 2019. Assessing consistency of spring phenology of snow covered forests as estimated by vegetation indices, gross primary production, and solar induced chlorophyll fluorescence. Agric. For. Meteorol. 275, 305–316. https://doi.org/10.1016/j.agrformet.2019.06.002.
Chen, G.; Li, X.; Liu, X.; Chen, Y.; Liang, X.; Leng, J.; Xu, X.; Liao, W.; Qiu, Y.a.; Wu, Q., 2020. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 2020, 11. https://doi.org/10.1038/s41467-020-14386-x.
Cook, B.I.; Wolkovich, E.M.; Parmesan, C., 2012. Divergent responses to spring and winter warming drive community level flowering trends. Proc. Natl. Acad. Sci. USA 2012, 109, 9000–9005. https://doi.org/10.1073/pnas.1118364109.
Cohen, W. B.; Yang, Z. G. and Kennedy, R., 201(. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and validation. Remote Sensing of Environment, 114: 2911-2924. https://doi.org/10.1016/j.rse.2010.07.010.
Da Silva, A., Valcu, M., Kempenaers, B., 2015. Light pollution alters the phenology of dawn and dusk singing in common European songbirds. Philos. Trans. R. Soc. B Biol. Sci. 370, 1–9. https://doi.org/10.1098/rstb.2014.0126.
Dahlin, K.M., Fisher, R.A., Lawrence, P.J., 2015. Environmental drivers of drought deciduous phenology in the Community Land Model. Biogeosciences 12, 5061–5074. https://doi.org/10.5194/bg-12-5061-2015, 2015.
Fisher, J.I., Mustard, J.F., 2007. Cross-scalar satellite phenology from ground, Landsat, and MODIS data. Remote Sensing of Environment. 109, 261–273. https://doi.org/10.1016/j.rse.2007.01.004.
Fisher, J.I., Mustard, J.F., Vadeboncoeur, M.A., 2006. Green leaf phenology at Landsat resolution: scaling from the field to the satellite. Remote Sensing of Environment. 100, 265–279. https://doi.org/10.1016/j.rse.2005.10.022.
Foroughi, H., Naseri, A. A., Boroomand Nasab, S., Hamzeh, S., Sadeghi, M., Tuller, M., & Jones, S. B., 2020. A new mathematical formulation for remote sensing of soil moisture based on the Red-NIR space. International Journal of Remote Sensing, 41(20), 8034–8047.  https://doi.org/10.1080/01431161.2020.1770365.
Fu, Y. H., Zhao, H., Piao, S., Peaucelle, M., Peng, S., Zhou, G., ... & Janssens, I. A., 2015. Declining global warming effects on the phenology of spring leaf unfolding. Nature, 526(7571), 104-107.‏ https://doi.org/10.1038/nature15402.
Ganguly, S., Friedl, M.A., Tan, B., Zhang, X., Verma, M., 2010. Land surface phenology from MODIS: characterization of the Collection 5 global land cover dynamics product. Remote Sensing of Environment. 114, 1805–1816. https://doi.org/10.1016/j.rse.2010.04.005.
Huang, K., Zhang, Y., Tagesson, T., Brandt, M., Wang, L., Chen, N., ... & Fensholt, R., 2021. The confounding effect of snow cover on assessing spring phenology from space: A new look at trends on the Tibetan Plateau. Science of the Total Environment, 756, 144011. https://doi.org/10.1016/j.scitotenv.2020.144011.
Huete, A., Justice, C., & Liu, H., 1994. Development of vegetation and soil indices for MODIS EOS. Remote Sensing of Environment, 49, 224– 234. https://doi.org/10.1016/0034-4257(94)90018-3.
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G., 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1–2), 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2.
Imhoff, M.L., Zhang, P., Wolfe, R.E., Bounoua, L., 2010. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing of Environment. 114, 504–513. https://doi.org/10.1016/j.rse.2009.10.008.
Jochner, S., Menzel, A., 2015. Urban phenological studies – past, present, future. Environ. Pollut. 203, 250–261. https://doi.org/10.1016/j.envpol.2015.01.003.
Masihpoor, M; datvish sefat, A A; rahmani, R; and fatehi, P., 2021. “Phenological Parameters Trend of the Southern Zagros Forests Based on MODIS-NDVI Time Series during 2000-2017.” IRANIAN JOURNAL OF FOREST 12 (4 #a001336): 577–90.
Melaas, E.K., Friedl, M.A., Zhu, Z., 2013. Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM + data. Remote Sensing of Environment. 132, 176–185. https://doi.org/10.1016/j.rse.2013.01.011.
Menzel, A.; Sparks, T.H.; Estrella, N.; Koch, E.; Aasa, A.; Ahas, R.; Alm-Kübler, K.; Bissolli, P.; Braslavská, O.g.; Briede, A., 2006. European phenological response to climate change matches the warming pattern. Global Chang. Biol. 2006, 12, 1969–1976. https://doi.org/10.1111/j.1365-2486.2006.01193.x.
Nagendra, H.; Bai, X.; Brondizio, E.S.; Lwasa, S., 2018. The urban south and the predicament of global sustainability. Nat. Sustain. 2018, 1, 341–349. https://doi.org/10.1038/s41893-018-0101-5.
Neil, K., Wu, J., 2006. Effects of urbanization on plant flowering phenology: a review. Urban Ecosyst. 9, 243–257. https://doi.org/10.1007/s11252-006-9354-2.
Peñuelas, J., Rutishauser, T., & Filella, I., 2009. Phenology feedbacks on climate change. Science, 324(5929), 887-888. DOI: 10.1126/science.117300.
Piao, S., Ciais, P., Friedlingstein, P., Peylin, P., Reichstein, M., Luyssaert, S., ... & Vesala, T., 2008. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 451(7174), 49-52. https://doi.org/10.1038/nature06444.
Li, X., Gong, P., 2016. An “exclusion-inclusion” framework for extracting human settlements in rapidly developing regions of China from Landsat images. Remote Sensing of Environment. 186, 286–296. https://doi.org/10.1016/j.rse.2016.08.029.
Li, X., Yu, L., Xu, Y., Yang, J., Gong, P., 2016a. Ten years after Hurricane Katrina: monitoring recovery in New Orleans and the surrounding areas using remote sensing. Sci. Bull. 61, 1460–1470. https://doi.org/10.1007/s11434-016-1167-y.
Li, X., Zhou, Y., Asrar, G.R., Mao, J., Li, X., Li, W., 2016b. Response of vegetation phenology to urbanization in the conterminous United States. Glob. Chang. Biol. 23.
Lu, P., Yu, Q., Liu, J., Lee, X., 2006. Advance of tree-flowering dates in response to urban climate change. Agric. For. Meteorol. 138, 120–131. https://doi.org/10.1016/j.agrformet.2006.04.002.
Luo, Z., Sun, O.J., Ge, Q., Xu, W., Zheng, J., 2006. Phenological responses of plants to climate change in an urban environment. Ecol. Res. 22, 507–514. https://doi.org/10.1007/s11284-006-0044-6.
Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M., 2013. Climate change, phenology, and phonological control of vegetation feedbacks to the climate system. Agr. Forest Meteorol. 2013, 169, 156–173. https://doi.org/10.1016/j.agrformet.2012.09.012.
Sharif, M., & Attarchi, S. (2024). Investigating the effect of temperature, precipitation, and soil salinity changes on Riparian Forests’ phenology using a remote sensing approachRemote Sensing Applications: Society and Environment, 101194.‏ https://doi.org/10.1016/j.rsase.2024.101194.
Sharif, M., Attarchi, S., & A.Kakroodi, A., 2022. Investigating the phenology changes of three plant species in different ecosystems using radar and optical data. Physical Geography Research Quarterly, 54(1), 111–133. doi: 10.22059/jphgr.2022.334134.1007658.
Sharif, M., A. Kakroodi, A., Heidari, S., & Kiani, A. (2023). Monitoring fifty-year changes in riparian forests of Gotvand County, Iran, using remote sensing imagesIranian Journal of Forest and Poplar Research31(3), 203-224. doi: 10.22092/ijfpr.2023.362063.2098
Wang, Jie, Xiangming Xiao, Yuanwei Qin, Jinwei Dong, Geli Zhang, and Weili Kou., 2015. “Mapping Paddy Rice Planting Area in Wheat-Rice Double-Cropped Areas through Integration of Landsat-8 OLI, MODIS, and PALSAR Images.” Nature Publishing Group (March):1–11. https://doi.org/10.1038/srep10088.
Wu, J., 2014. Urban ecology and sustainability: the state-of-the-science and future directions. Landsc. Urban Plan. 125, 209–221. https://doi.org/10.1016/j.landurbplan.2014.01.018.
Wu, C., Peng, D., Soudani, K., Siebicke, L., Gough, C. M., Arain, M. A., ... & Ge, Q., 2017. Land surface phenology derived from normalized difference vegetation index (NDVI) at global FLUXNET sites. Agricultural and Forest Meteorology, 233, 171-182. https://doi.org/10.1016/j.agrformet.2016.11.193 .‏
Sajadi, P.; Sang, Y.-F.; Gholamnia, M.; Bonafoni, S.; Brocca, L.; Pradhan, B.; Singh, A., 2021. Performance Evaluation of Long NDVI Timeseries from AVHRR, MODIS and Landsat Sensors over Landslide-Prone Locations in Qinghai-Tibetan Plateau. Remote Sens. 13, 3172. https://doi.org/10.3390/rs13163172.
Zhang, G.J., Cai, M., Hu, A., 2013. Energy consumption and the unexplained winter warming over northern Asia and North America. Nat. Clim. Chang. 3, 466–470. Zhang, X., Friedl, M.A., Schaaf, C.B., 2006. https://doi.org/10.1038/nclimate1803.
Zhang, X., Friedl, M.A., Schaaf, C.B., Strahler, A.H., 2004a. Climate controls on vegetation phenological patterns in northern mid-and high latitudes inferred from MODIS data. Glob. Chang. Biol. 10, 1133–1145. https://doi.org/10.1111/j.1529-8817.2003.00784.x.
Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C., Gao, F., ... & Huete, A., 2003. Monitoring vegetation phenology using MODIS. Remote sensing of environment, 84(3), 471-475. https://doi.org/10.1016/S0034-4257(02)00135-9.
Zhou, Y., Gurney, K., 2010. A new methodology for quantifying on-site residential and commercial fossil fuel CO2 emissions at the building spatial scale and hourly time scale. Carbon Manage. 1, 45–56. https://doi.org/10.4155/cmt.10.7.
Zhou, Y., Smith, S. J., Zhao, K., Imhoff, M., Thomson, A., Bond-Lamberty, B., ... & Elvidge, C. D., 2015. A global map of urban extent from nightlights. Environmental Research Letters, 10(5), 054011.‏ https://doi.org/10.1088/1748-9326/10/5/054011.