Aduvukha, G. R., Abdel-Rahman, E. M., Sichangi, A. W., Makokha, G. O., Landmann, T., Mudereri, B. T., ... & Dubois, T. (2021). Cropping Pattern Mapping in an Agro-Natural Heterogeneous Landscape Using Sentinel-2 and Sentinel-1 Satellite D atasets.
Agriculture,
11(6), 530.
https://doi.org/10.3390/agriculture11060530
Ban, Y. (2003). Synergy of multitemporal ERS-1 SAR and Landsat TM data for classification of agricultural crops.
Canadian Journal of Remote Sensing,
29(4), 518-526.
https://doi.org/10.5589/m03-014
Blickensdörfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., & Hostert, P. (2022). Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote sensing of environment, 269, 112831. https://doi.org/10.1016/j.rse.2021.112831
Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
Brisco,B.(1998).”Agricultural Application With Radar” Principles and Application of Imaging RADAR:381-406.
Bégué, A., Arvor, D., Bellón, B., Betbeder, J., Abelleyra, D. D., Ferraz, R. P. D., ... & Verón, S. R. Remote Sensing and Cropping Practices: A Review. Remote Sens, 2018, 10 (1), 99.
Bolton, D. K., & Friedl, M. A. (2013). Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agricultural and Forest Meteorology, 173, 74-84. https://doi.org/10.1016/j.agrformet.2013.01.007
Belgiu, M., & Csillik, O. (2018). Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote sensing of environment, 204, 509-523. https://doi.org/10.1016/j.rse.2017.10.005
Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote sensing of environment, 37(1), 35-46.
https://doi.org/10.1016/0034-4257(91)90048-B
Chong, L. U. O., LIU, H. J., LU, L. P., LIU, Z. R., KONG, F. C., & ZHANG, X. L. (2021). Monthly composites from Sentinel-1 and Sentinel-2 images for regional major crop mapping with Google Earth Engine. Journal of Integrative Agriculture, 20(7), 1944-1957. https://doi.org/10.1016/S2095-3119(20)63329-9
Conese, C., & Maselli, F. (1991). Use of multitemporal information to improve the classification performance of TM scenes in complex terrain. ISPRS Journal of Photogrammetry and Remote Sensing, 46(4), 187-197. https://doi.org/10.1016/0924-2716(91)90052-W
Clerici, N., Valbuena Calderón, C. A., & Posada, J. M. (2017). Fusion of Sentinel-1A and Sentinel-2A data for land cover mapping: a case study in the lower Magdalena region, Colombia. Journal of Maps, 13(2), 718-726. https://doi.org/10.1080/17445647.2017.1372316
Dash, J., & Curran, P. J. (2004). The MERIS terrestrial chlorophyll index.
Feng, S., Zhao, J., Liu, T., Zhang, H., Zhang, Z., & Guo, X. (2019). Crop type identification and mapping using machine learning algorithms and sentinel-2 time series data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(9), 3295-3306. https://doi.org/10.1109/JSTARS.2019.2922469
Filgueiras, R., Mantovani, E. C., Althoff, D., Fernandes Filho, E. I., & Cunha, F. F. D. (2019). Crop NDVI monitoring based on sentinel 1. Remote Sensing, 11(12), 1441. https://doi.org/10.3390/rs11121441
Gao, F., Anderson, M. C., Zhang, X., Yang, Z., Alfieri, J. G., Kustas, W. P., ... & Prueger, J. H. (2017). Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sensing of Environment, 188, 9-25. https://doi.org/10.1016/j.rse.2016.11.004
Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote sensing of Environment, 58(3), 289-298. https://doi.org/10.1016/S0034-4257(96)00072-7
Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote sensing of environment, 90(3), 337-352. https://doi.org/10.1016/S0034-4257(96)00072-7
Huang, Z., Chen, H., Hsu, C. J., Chen, W. H., & Wu, S. (2004). Credit rating analysis with support vector machines and neural networks: a market comparative study. Decision support systems, 37(4), 543-558. https://doi.org/10.1016/S0167-9236(03)00086-1
Immitzer, M., Vuolo, F., & Atzberger, C. (2016). First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote sensing, 8(3), 166. https://doi.org/10.3390/rs8030166
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: Springer
Jia, K., Li, Q., Tian, Y., Wu, B., Zhang, F., & Meng, J. (2012). Crop classification using multi-configuration SAR data in the North China Plain. International Journal of Remote Sensing, 33(1), 170-183. https://doi.org/10.1080/01431161.2011.587844
Joelsson, S. R., Benediktsson, J. A., & Sveinsson, J. R. (2005, July). Random forest classifiers for hyperspectral data. In Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS'05. (Vol. 1, pp. 4-pp). IEEE. https://doi.org/10.1109/IGARSS.2005.1526129
Kang, Y., Meng, Q., Liu, M., Zou, Y., & Wang, X. (2021). Crop Classification Based on Red Edge Features Analysis of GF-6 WFV Data. Sensors, 21(13), 4328. https://doi.org/10.3390/s21134328
Kim, H. O., & Yeom, J. M. (2014). Effect of red-edge and texture features for object-based paddy rice crop classification using RapidEye multi-spectral satellite image data. International Journal of Remote Sensing, 35(19), 7046-7068. https://doi.org/10.1080/01431161.2014.965285
Kobayashi, N., Tani, H., Wang, X., & Sonobe, R. (2020). Crop classification using spectral indices derived from Sentinel-2A imagery. Journal of Information and Telecommunication, 4(1), 67-90. https://doi.org/10.1080/24751839.2019.1694765
Khosravi, I., & Alavipanah, S. K. (2019). A random forest-based framework for crop mapping using temporal, spectral, textural and polarimetric observations. International Journal of Remote Sensing, 40(18), 7221-7251. https://doi.org/10.1080/01431161.2019.1601285
[26] Khosravi, I., Safari, A., & Homayouni, S. (2018). MSMD: maximum separability and minimum dependency feature selection for cropland classification from optical and radar data. International Journal of Remote Sensing, 39(8), 2159-2176. https://doi.org/10.1080/01431161.2018.1425564
Liu, C., Shang, J., Vachon, P. W., & McNairn, H. (2012). Multiyear crop monitoring using polarimetric RADARSAT-2 data. IEEE Transactions on Geoscience and Remote sensing, 51(4), 2227-2240.
https://doi.org/10.1109/TGRS.2012.2208649
Liu, Y., Wang, X., & Qian, J. (2021). Crop distribution extraction based on Sentinel data. In E3S Web of Conferences (Vol. 252, p. 02081). EDP Sciences.
https://doi.org/10.1051/e3sconf/202125202081
Nitze, I., Barrett, B., & Cawkwell, F. (2015). Temporal optimisation of image acquisition for land cover classification with Random Forest and MODIS time-series. International Journal of Applied Earth Observation and Geoinformation, 34, 136-146. https://doi.org/10.1016/j.jag.2014.08.001
Orynbaikyzy, A., Gessner, U., & Conrad, C. (2019). Crop type classification using a combination of optical and radar remote sensing data: a review. International journal of remote sensing, 40(17), 6553-6595. https://doi.org/10.1080/01431161.2019.1569791
Pal, M., & Mather, P. M. (2004). Assessment of the effectiveness of support vector machines for hyperspectral data. Future generation computer systems, 20(7), 1215-1225. https://doi.org/10.1016/j.future.2003.11.011
Qiong, H. U., WU, W. B., Qian, S. O. N. G., Miao, L. U., Di, C. H. E. N., YU, Q. Y., & TANG, H. J. (2017). How do temporal and spectral features matter in crop classification in Heilongjiang Province, China?. Journal of integrative agriculture, 16(2), 324-336. https://doi.org/10.1016/S2095-3119(15)61321-1
Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. (2012). An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93-104. https://doi.org/10.1016/j.isprsjprs.2011.11.002
Shamsoddini, A., J. C. Trinder, and R. Turner. 2013. “Non-Linear Methods for Inferring Lidar Metrics Using SPOT-5 Textural Data.” ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences II-5/W2: 259–264. doi:10.5194/isprsannals-II-5-W2-259-2013. https://doi.org/10.5194/isprsannals-II-5-W2-259-2013, 2013.
Skriver, H., Mattia, F., Satalino, G., Balenzano, A., Pauwels, V. R., Verhoest, N. E., & Davidson, M. (2011). Crop classification using short-revisit multitemporal SAR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(2), 423-431. https://doi.org/10.1109/JSTARS.2011.2106198
Sun, C., Bian, Y., Zhou, T., & Pan, J. (2019). Using of multi-source and multi-temporal remote sensing data improves crop-type mapping in the subtropical agriculture region. Sensors, 19(10), 2401. https://doi.org/10.3390/s19102401
Sun, L., Chen, J., Guo, S., Deng, X., & Han, Y. (2020). Integration of Time Series Sentinel-1 and Sentinel-2 Imagery for Crop Type Mapping over Oasis Agricultural Areas. Remote Sensing, 12(1), 158. https://doi.org/10.3390/rs12010158
Shamsoddini, A., & Raval, S. (2018). Mapping red edge-based vegetation health indicators using Landsat TM data for Australian native vegetation cover. Earth Science Informatics, 11(4), 545-552. https://doi.org/10.1080/01431160701281056
Stehman, S. V. (1997). Selecting and interpreting measures of thematic classification accuracy. Remote sensing of Environment, 62(1), 77-89.
https://doi.org/10.1016/S0034-4257(97)00083-7
Stehman, S. V., & Foody, G. M. (2019). Key issues in rigorous accuracy assessment of land cover products. Remote Sensing of Environment, 231, 111199.
https://doi.org/10.1016/j.rse.2019.05.018
Sonobe, R., Yamaya, Y., Tani, H., Wang, X., Kobayashi, N., & Mochizuki, K. I. (2018). Crop classification from Sentinel-2-derived vegetation indices using ensemble learning. Journal of
Applied Remote Sensing,
12(2), 026019.
https://doi.org/10.1117/1.JRS.12.026019
Schuster, C., Förster, M., & Kleinschmit, B. (2012). Testing the red edge channel for improving land-use classifications based on high-resolution multi-spectral satellite data. International Journal of Remote Sensing, 33(17), 5583-5599. https://doi.org/10.1080/01431161.2012.666812
Tariq, A., Yan, J., Gagnon, A. S., Riaz Khan, M., & Mumtaz, F. (2022). Mapping of cropland, cropping patterns and crop types by combining optical remote sensing images with decision tree classifier and random forest. Geo-spatial Information Science, 1-19. https://doi.org/10.1080/10095020.2022.2100287
Tavakkoli, M. (2011). Multi-Temporal Classification of Crops Using ENVISAT ASAR Data (Doctoral dissertation, Ph. D. Dissertation, Leibniz University of Hannover).
DOI:10.4236/ijg.2014.52021
Tscharntke, T., Clough, Y., Wanger, T. C., Jackson, L., Motzke, I., Perfecto, I., ... & Whitbread, A. (2012). Global food security, biodiversity conservation and the future of agricultural intensification. Biological Conservation, 151(1), 53-59. https://doi.org/10.1016/j.biocon.2012.01.068
Wilson, J. H., Zhang, C., & Kovacs, J. M. (2014). Separating crop species in northeastern Ontario using hyperspectral data. Remote Sensing, 6(2), 925-945. https://doi.org/10.3390/rs6020925
Veloso, A., Mermoz, S., Bouvet, A., Le Toan, T., Planells, M., Dejoux, J. F., & Ceschia, E. (2017). Understanding the temporal behaviour of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote sensing of environment, 199, 415-426. https://doi.org/10.1016/j.rse.2017.07.015
Yilmaz, M. T., Hunt Jr, E. R., & Jackson, T. J. (2008). Remote sensing of vegetation water content from equivalent water thickness using satellite imagery. Remote Sensing of Environment, 112(5), 2514-2522. https://doi.org/10.1016/j.rse.2007.11.014
Yi, Z., Jia, L., & Chen, Q. (2020). Crop classification using multi-temporal Sentinel-2 data in the Shiyang River Basin of China. Remote Sensing, 12(24), 4052. https://doi.org/10.3390/rs12244052
Zandsalimi, Z., Sima, S., & Mousivand, A. (2021). Evaluating the Performance of Global Land Cover Maps in Agricultural Land Delineation (Case Study: Lake Urmia Basin). Iranian Journal of Soil and Water Research, 52(3), 795-810. https://dx.doi.org/10.22059/ijswr.2021.315097.668828
Zhong, L., Gong, P., & Biging, G. S. (2014). Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery. Remote Sensing of Environment, 140, 1-13. https://doi.org/10.1016/j.rse.2013.08.023
Zhang, T., Su, J., Liu, C., Chen, W. H., Liu, H., & Liu, G. (2017, September). Band selection in Sentinel-2 satellite for agriculture applications. In 2017 23rd International Conference on Automation and Computing (ICAC) (pp. 1-6). IEEE. https://doi.org/10.23919/IConAC.2017.8081990
Zhang, H., Kang, J., Xu, X., & Zhang, L. (2020). Accessing the temporal and spectral features in crop type mapping using multi-temporal Sentinel-2 imagery: A case study of Yi’an County, Heilongjiang province, China. Computers and Electronics in Agriculture, 176, 105618. https://doi.org/10.1016/j.compag.2020.105618
Zhang, L., Gong, Z. N., Wang, Q. W., Jin, D. D., & Wang, X. (2019). Wetland mapping of Yellow River Delta wetlands based on multi-feature optimization of Sentinel-2 images. J. Remote Sens, 23, 313-326. https://doi.org/10.1016/j.scitotenv.2021.147061
Zhang, H., Wang, Y., Shang, J., Liu, M., & Li, Q. (2021). Investigating the impact of classification features and classifiers on crop mapping performance in heterogeneous agricultural landscapes. International Journal of Applied Earth Observation and Geoinformation, 102, 102388. https://doi.org/10.1016/j.jag.2021.102388