Benedetti, R. & Rossin, P., 1993, On the Use of NDVI Profiles as a Tool for Agricultural Statistics: The Case Study of Wheat Estimate and Forecast in Emilia, Remote Sensing of Environment,
Brown, J.F., Wardlow, B.D., Tadesse, T., Hayes, M.J. & Reed, B.C., 2008, The Vegetation Drought Response Index (VegDRI): A New Integrated Approach for Monitoring Drought Stress in Vegetation, GIS Cience Remote Sensing, 45, PP. 16-46.
Brown, J.F., Howard, D., Wylie, B., Frieze, A., Ji, L. & Gacke, C., 2015, Application-Ready Expedited MODIS Data for Operational Land Surface Monitoring of Vegetation Condition, Remote Sensing, 7, PP. 16226-16240. https://doi.org/10.3390/rs71215825.
Boyte, S.P., Wylie, B.K. & Major, D.J., 2015,
Mapping and monitoring cheatgrass dieoff in rangelands of the Northern Great Basin, USA, Rangel, Ecol, Manag., 68, PP. 18-28,
https://doi.org/10.1016/j.rama.2014.12.005.
Berhan, G., Hill, S., Tadesse, T. & Atnafu, S., 2011,
Using Satellite Images for Drought Monitoring: A Knowledge Discovery Approach, J. Strategic Innov. Sustain., 7(1), P. 135,
https://www.researchgate.net/publication/260248307_Using_Satellite.
Fuchs, B.A., 2021, National Drought Mitigation Center, University of Nebraska-Lincoln, Lincoln, NE, USA.
Holdren, J.P. & Ehrlich, P.R., 1974, Human Population and Global Environment, Am. Sci., 62, PP. 282-292,
Jahangir, M. & Mashidi, D., 2019, Evaluation of Agricultural Drought Monitoring Based on Remote Sensing Using the Standardized Rainfall Index in the Growing Months (Case Study: Karun Bozor Watershed), Iran Irrigation and Drainage Journal, 14(4), PP. 1252-1264.
Jenkerson, C.B., Maiersperger, T. & Schmidt, G., 2010,
eMODIS, A User-Friendly Data Source, U.S. Geological Survey Open-File Report 2010-1055, U.S. Geological Survey EROS Center: Sioux Falls, SD, USA., P. 10.
https://pubs.usgs.gov/of/2010/1055/pdf/OF2010-1055.pdf.
Ji, L., Gallo, K., Eidenshink, J.C. & Dwyer, J., 2008, Agreement Evaluation of AVHRR and MODIS 16-Day Composite NDVI Data Sets, Int. J. Remote Sensing of Environment, 29, PP. 4839-4861,
Justice, C.O., Roman, M.O., Csiszar, I., Vermote, E.F., Wolfe, R.E., Hook, S.J., Friedl, M., Wang, Z., Schaaf, C.B. & Miura, T., 2013, Land and Cryosphere Products from Suomi NPP VIIRS: Overview and Status, J. Geophys. Res. Atmos., 118, PP. 9753-9765.
Kogan F.N., 1995,
Droughts of the Late 1980s in the United States as Derived from NOAA Polar-Orbiting Satellite Data, Bull. Am. Meteorol. Soc., 76, PP. 655-667,
https://www.jstor.org/stable/26232390.
Kogan, F.N., 2001a,
Contribution of Remote Sensing to Drought Early Warning. National Oceanic and Atmospheric Administration (NOAA), National Environmental Satellite Data and Information Services (NESDIS), Washington: DC. U.S.A.
https://www.researchgate.net/publication/253598539.
Kogan, F.N. & Guo, W., 2016, Early Twenty-First-Century Droughts during the Warmest Climate, Geomatics Nat. Hazards Risk, 7, P. 127-137,
Kogan, F.N., Goldberg, M., Schott, T. & Guo, W., 2015,
Suomi NPP/VIIRS: Improving Drought Watch, Crop Loss Prediction, and Food Security, Int. J. Remote Sensing of Environment, 36, PP. 5373-5383,
http://dx.doi.org/10.1080/01431161.2015.1095370.
Krzanowski, W.J., 1998, Selection of Variables to Preserve Multivariate Data Structure, Using Principal Components, Journal of the Royal Statistical Society, 36(1),
Littell, J.S., Peterson, D.L., Riley, K.L., Liu, Y. & Luce, C.H. (Eds.)
Fire and Drought, U.S. Department of Agriculture, Forest Service, Washington Office: Washington, DC, USA.
http://www.ncforestservice.gov/Managing_your_forest/pdf/EffectsDroughtForestsRangelands.pdf.
McKee, T.B., Doesken, N.J. & Kliest, J., 1995, Drought Monitoring with Multiple Time Scales, In Proceedings of the 9th Conference of Applied Climatology, 15-20 January, Dallas TX. American Meteorological Society, Boston, MA. PP. 233-236.
Qermwz Cheshme, B., Hosseini., M.Gh., Hosseini, T. & Sherafati, A., 2019,
Evaluation of the Relationship between Meteorological Drought and Vegetation Cover of Rainfed Lands in Lorestan Province, Watershed Researches, 34(2), PP. 77-90, https://doi.org
10.22092/wmej.2020.342647.1332.
Rezai Banafsheh, M., Rezaei, A. & Faridpour, M., 2014,
Agricultural Drought Analysis of East Azerbaijan Province with Emphasis on Remote Sensing and Vegetation Status Index, Danesh Water and Soil Science, 25(1), PP. 113-123. 13.
https://water-soil.tabrizu.ac.ir/article_3509.html.
Roger, J.C., Vermote, E.F., Devadiga, S. & Ray, J.P., 2020, Suomi-NPP VIIRS Surface Reflectance User’s Guide,
Roswintiarti, O., Oarwati, S. & Angraini, N., 2010, Potential Drought Monitoring over Agriculture Area in Java Island, Indonesia. Indonesian National Institute of Aeronautics and Space (LAPAN), Progress Report of SAFE Prototype Year.
Su, Z.B., Yacob, A., Wen, J., Roerink, G., He, Y.B, Gao, B.H., Boogaard, H. & van Diepen, C., 2003,
Assessing Relative Soil Moisture with Remote Sensing Data: Theory, Experimental Validation, and Application to Drought Monitoring over the North China Plain, Physics and Chemistry of the Earth, 28(1-3), https://doi
10.1016/S1474-7065(03)00010-X.
Svoboda, M., LeComte, D., Hayes, M., Heim, R., Gleason, K., Angel, J., Rippey, B., Tinker, R., Palecki, M. & Stooksbury, D., 2002,
The Drought Monitor, Bull. Am. Meteorol. Soc., 83, PP. 1181-1190,
https://doi.org/10.1175/1520-0477-83.8.1181.
Tadesse, T., Demisse, G.B., Zaitchik, B. & Dinku, T., 2014, Satellite-Based Hybrid Drought Monitoring Tool for Prediction of Vegetation Condition in Eastern Africa: A Case Study for Ethiopia, Water Resour. Res., 50, PP. 2176-2190.
Vermote, E., Franch, B. & Claverie, M., VIIRS, NPP Surface Reflectance 8-Day L3 Global 500 m SIN Grid, V001,
Vicente-Serrano, S.M., Cuadrat-Prats, J.M. & Romo, A., 2006, Early Prediction of Crop Production Using Drought Indices at Different Time-Scales and Remote Sensing Data: Application in the Ebro Valley (North-East Spain), International Journal of Remotr Sensing, 27(3).
Wang, D., Morton, D., Masek, J., Wu, A., Nagol, J., Xiong, X., Levy, R., Vermote, E. & Wolfe, R., 2012, Impact of Sensor Degradation on the MODIS NDVI Time Series, Remote Sensing of Environment, 119, PP. 55-61.
Wang, X., Li, Y., Wang, X., Li, Y., Lian, J. & Gong, X., 2015, Temporal and Spatial Variations in NDVI and Analysis of the Driving Factors in the Desertified Areas of Northern China From 1998 to 2015, Front. Environ. Sci., 9, P. 633020,
Wylie, B.K., Zhang, L., Bliss, N., Ji, L., Tieszen, L.L. & Jolly, W.M., 2008, Integrating Modelling and Remote Sensing to Identify Ecosystem Performance Anomalies in the Boreal Forest, Yukon River Basin, Alaska, Int. J. Digit. Earth, 1, PP. 196-220.
Zeng, L., Wardlow, B.D., Xiang, D., Hu, S. & Li, D., 2020, A Review of Vegetation Phenological Metrics Extraction Using Time-Series, Multispectral Satellite Data, Remote Sens. Environ., 237, P. 111511, https://doi: 10.1016/j.rse.2019.111511.
Zhang, X., Liu, L., Liu, Y., Jayavelu, S., Wang, J., Moon, M., Henebry, G.M., Friedl, M.A. & Schaaf, C.B., 2018, Generation and Evaluation of the VIIRS Land Surface Phenology Product, Remote Sensing of Environment, 216, PP. 212-229,
Zhu, X. & Liu, D., 2015, Improving Forest Aboveground Biomass Estimation Using Seasonal Landsat NDVI Time-Series, ISPRS J. Photogramm. Remote Sensing of Environment, 102, PP. 222-231,