تخمین میزان زیست‌تودة جنگل‌ها با استفاده از تصاویر رادار با روزنة مجازی مطالعة موردی: جنگل خیرودکنار نوشهر

نوع مقاله : علمی - پژوهشی

نویسنده

دانشگاه خواجه نصیرالدین طوسی

چکیده

 تجمع گازهای گلخانه‌ای در اتمسفر، مهم‌ترین عامل افزایش دمای کرة زمین از نیمة دوم قرن بیستم به بعد، شناخته شده است. به‌دام‌انداختن کربن در جنگل‌ها و میان درختان راه‌حلی عملی، کارآمد و ارزان برای کاهش سطح دی‌اکسید‌کربن در اتمسفر است. بنابراین اندازه‌گیری زیست‌توده در بررسی تغییرات آب‌وهوایی و چرخة کربن جهانی اهمیت ویژه‌ای دارد. در پژوهش حاضر روشی بر پایة تبدیلات موجک به‌منظور تخمین زیست‌توده در منطقه‌ای جنگلی با درختان پهن‌برگ در شمال ایران ارائه شده است. تبدیلات مختلف موجک (تبدیلات دوبعدی گسسته) روی تصویر رادار با روزنة مجازی سنجندة ALOS PALSAR اعمال شدند و ضرایب به‌دست‌آمده به‌عنوان داده‌های جداگانه ذخیره شدند. میزان همبستگی هریک از پارامترهای محاسبه‌شده با مقدار زیست‌توده به‌وسیلة آنالیز رگرسیون چندگانه بررسی شد. نتایج نشان دادند که ضرایب به‌دست‌آمده از تبدیل موجک Db2 در مقایسه با سایر تبدیلات، همبستگی بیشتری با مقدار زیست‌توده دارند. در تجزیة یک‌مرحله‌ای، مقدار همبستگی با زیست‌توده تقریباً 5/0 و در تجزیة دومرحله‌ای تصاویر، مقدار همبستگی به‌دست‌آمده برای تصویر مایکروویو به بیش از 75/0 ارتقا پیدا کرد. پژوهش حاضر نشان داد که استفاده از تبدیلات موجک می‌تواند روش مناسبی برای تخمین زیست‌توده ـ به‌ویژه در مناطقی با ساختار پوشش گیاهی پیچیده ـ باشد.  کلید‌واژه‌ها: تصاویر آلوس پالسار، تبدیل موجک، زیست‌تودة جنگل، آنالیز رگرسیون چندگانه.   

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of Forest Biomass Using SAR Data

چکیده [English]

The increasing concentration of greenhouse gases has been identified as a main cause of increase of global mean temperatures since the mid-20th century. The effect of human-induced climate change could be unprecedented and far-reaching. Carbon sequestration into trees and forests is an effective and inexpensive way for mitigating the CO2 level in the atmosphere. Hence, accurate measurement of biomass will be of great importance to global carbon cycle and climate change. This study performed a wavelet-based forest aboveground biomass estimation approach in a temperate deciduous forest, Kheyroud Kenar forest in north part of Iran. Wavelet analysis, specifically two-dimensional discrete wavelet transform (DWT) was applied to ALOS PALSAR images to obtain wavelet coefficients (WCs), which were correlated with forest inventory data using multiple linear regression analysis to investigate the relationship. The results indicate that Db wavelet coefficients correlate better with field biomass data than other parameters. For the first level of the decomposition, the correlation coefficient is 0.5 while for second level, the overall R value increased up to 0.75. This study demonstrates that wavelet-based biomass estimation could be a very promising approach for providing better biomass estimation; however, further research is needed for identifying robust wavelet coefficients and optimizing procedures.  Keywords: ALOS PALSAR, Wavelet analysis, Forest biomass, Multiple regression analysis.

  1. Beaudoin, A., Troufleau, D., Desbois, N., Piet, L. and Deshayes, M., 1995, On the Use of ERS-1 SAR Data Over Hilly Terrain: Necessity of Radiometric Corrections For thematic Applications in IEEE Int, Geos. RS Symposium, Florence, PP. 150-155.
  2. FAO Forestry Department., 1997, FAO Corporate Document Repository, [Online]. http://www.fao.org/documents/ pub_dett.asp?pub_id=20126&lang=en.
  3. Falahati Bagherabadi, M., 2008, Fusion of Radar and Optical Satellite Images for Estimation of Forest Volumetric Coverage of Trees (Case study: North of Iran), M.Sc. thesis, Tehran University.
  4. Foody, G.M., 2003, Remote Sensing of Tropical Forest Environments: Towards the Monitoring of Environmental Resources for Sustainable Development, International Journal of Remote Sensing, Vol. 24, PP. 4035–4046.
  5. Foody, G.M., Cutler, M.E., Mcmorrow, J., Pe1z, D., Tangki, H., Boyd, D.S. & Douglas, I., 2001, Mapping the Biomass of Bornean Tropical Rain Forest from Remotely Sensed Data, Global Ecology & Biogeography, Vol. 10, PP. 379-387.
  6. Houghton, R.A., 1991, Tropical Deforestation and Atmospheric Carbon Dioxide, Climate Change, Vol. 19, PP. 99–118.
  7. Houghton, R.A., Lawrence, K.T., Hackler, J.L. and Brown, S., 2001, The Spatial Distribution of Forest Biomass in the Brazilian Amazon: A Comparison of Estimates. Global Change Biology, Vol. 7, PP. 731–746.
  8. Jiang, P., 2006, Biomass Estimation and Classification of Secondary Succession Using Radar And Optical Remote Sensing Data Based on Textural And Spectral Analysis In Amazonia, The School of Graduate Studies Department of Geography, Geology, and Anthropology, Indiana State University, Terre Haute, Indiana, Ph.D. thesis.
  9. Kasischke, E.S., Tanase, M.A., Bourgeau-Chavez, L. and Borr, M., 2011, Soil Moisture Limitations on Monitoring Boreal Forest Regrowth Using Spaceborne L-band SAR Data,
  10. Remote Sensing of Environment, Vol. 7,
  11. PP. 227–232,
  12. Lu, D., 2005, Aboveground Biomass Estimation Using Landsat TM Data in the Brazilian Amazon Basin, International Journal of Remote Sensing, Vol. 26,
  13. PP. 2509–2525.
  14. Lucas, R.M., Curran, P.J., Honzak, M., Foody, G.M., Do Amaral, I. & Amaral, S., 1998, The Contribution of Remotely Sensed Data in the Assessment of the Floristic Composition, total biomass & structure of Amazonian tropical secondary forests, Regeneracaii Florestal: Pesquisas na Amazonia, Vol. 10, PP. 61-82.
  15. Misiti, M.M., 1996, Wavelet Toolbox for Use with MATLAB, The Mathworks Inc.
  16. Nelson, R.F., Kimes, D.S., Salas, W.A. and Routhier, M., 2000, Secondary Forest Age and Tropical Forest Biomass Estimation Using Thematic Mapper Imagery, Bioscience, Vol. 50, PP. 419–431.
  17. Neter, J., Wasserman, W. and Kutner, M.H., 1990, In: Applied Linear Statistical Models, Third Edition, Homewood, IL: Irwin.
  18. Ranson, K.J., Sun, G., Weishamped, J.F. & Knox, G., 1997, Forest Biomass from Combined Ecosystem & Radar Backscatter Modeling, Remote Sensing of Environment, Vol. 59, PP. 118-133.
  19. Rignot, E.J., Zimmerman, R. & Van Zyl, J.J., 1995, Spaceborne Applications of P Band Imaging Radars for Measuring Forest Biomass, IEEE Transactions on Geoscience & Remote Sensing, Vol. 59, PP. 167-179.
  20. Sadeghi, Y., 2009, Forest Biomass Estimation Using Optical and SAR Data, M.Sc. thesis, Tehran University.
  21. Santos, J.R., Freitas, C., Araujo, L.S., Dutra, L.V., Mura, J.C., Gama , F.F., Soler , L.S. & Sant' Anna, J.S., 2003, Airborne P-band SAR Applied to the Aboveground Biomass Studies in the Brazilian Tropical Rainforest, Remote Sensing of Environment, Vol. 87, PP. 482-493.
  22. Steininger, M.K., 2000, Satellite Estimation of Tropical Secondary Forest Aboveground Biomass Data from Brazil and Bolivia, International Journal of Remote Sensing, Vol. 21, PP. 1139–1157.
  23. Trotter, C.M., Dymond, J.R., Goulding, C.J., 1997, Estimation of Timber Volume in a Coniferous Plantation Forest Using Landsat TM, International Journal of Remote Sensing, Vol. 18, PP. 2209-2223.
  24. Wei, X. F., 2008, Wavelet Analysis for above Ground Biomass Estimate In Temperate Deciduous Forests, The School of Graduate Studies Department of Geography, Geology and Anthropology Indiana State University, Terre Haute, Indiana, Ph.D. thesis.
  25. Wu, Y. and Strahler, A.H., 1994, Remote Estimation of Crown Size, Stand Density, & Biomass on the Oregon Transect, Ecological Applications, Vol. 42,
  26. PP. 299-312.
  27. Zheng, D., Rademacher, J., Chen, J., Crow, T., Bresee, M., Le Moine, J. and Ryu, S., 2004, Estimating Aboveground Biomass Using Landsat 7 ETM + data Across a Managed Landscape in Northern Wisconsin, USA, Remote Sensing of Environment, Vol. 93, PP. 402–411.