طبقه‌بندی شئ‌مبنای تصاویر بزرگ‌مقیاس ماهواره‌‌ای از مناطق شهری پیچیده برای تولید نقشة پوشش اراضی برمبنای یک مدل سلسله‌‌مراتبی جدید

نوع مقاله : مروری

نویسندگان

دانشگاه خواجه نصیرالدین طوسی

چکیده

 اطلاعات پوشش اراضی یکی از مهم‌ترین ابزارهای مدیریت شهری است و سنجش ‌‌از دور به‌عنوان فناوری ‌‌بهینه از نظر هزینه و زمان، در تولید این‌گونه اطلاعات اهمیت بسیار دارد. با توجه به وجود نواحی شهری پیچیده و متراکم در کشورهای جهان سوم، روش‌‌های شئ‌‌مبنا به‌عنوان راهکار مناسبی در پردازش تصاویر این‌گونه مناطق پیشنهاد شده‌اند. هدف پژوهش حاضر معرفی روش شئ‌‌مبنای جدیدی برای طبقه‌‌بندی مناطق شهری پیچیده با استفاده از تصاویر بزرگ‌مقیاس ماهواره‌‌ای و نزدیک‌شدن به فرایند تولید نقشة استاندارد و مؤثر با این روش است. در این مدل به‌منظور انتخاب پارامترهای قطعه‌‌بندی، از روشی جدید و همچنین از مدل طبقه‌‌‌بندی سلسله‌‌‌مراتبی به‌همراه استراتژی قانون‌مبنایی برای غلبه بر اغتشاشات بین‌کلاسی بهره‌‌گیری شد. در این حیطه ضمن بهینه‌‌‌سازی فضای ویژگی در آنالیزی چندمقیاسه، از دو روش طبقه‌‌بندی قانو‌‌ن‌‌مبنا و نزدیک‌ترین ‌‌همسایة فازی استفاده شد. روش پیشنهادی در پژوهش حاضر روی تصویر سنجندة  IKONOSاز شهر شیراز پیاده‌‌سازی شد، که دقت 84 درصد با استفاده از طبقه‌‌بندی روش قانون‌مبنا و نیز دقت 87 درصد از روش طبقه‌‌بندی نزدیک‌ترین همسایة فازی به‌دست آمد. افزون‌ بر این، پیاده‌‌سازی روش پیشنهادی روی تصویر  IKONOSشهر یزد، قابلیت تعمیم‌‌پذیری این روش را به سایر مناطق نشان داد.    کلید‌واژه‌ها: طبقه‌‌بندی پوشش اراضی، قانون‌‌مبنا، شئ‌‌مبنا، نزدیک‌ترین همسایة فازی، نواحی پیچیده. 

عنوان مقاله [English]

Object based Classification of Large Scale Satellite Images from Complicated Urban Areas for Land Cover Map Production based on a New Hierarchical Model

چکیده [English]

Land cover information is one of the most important prerequisite in urban management system. In this way remote sensing, as the most economic technology, is mainly used to produce land cover maps. Considering the complicated and dense urban areas in third world countries, object based approaches are suggested as an effective image processing technique. The purpose of this paper are the introduction of a new object based approach for classification of complicated urban area using high resolution satellite image and approaching to a standard and effective process of map generation by satellite images. This paper used a new approach to select the segmentation parameters and a new hierarchical classification model based on a rule based strategy is used to overcome the confusions between urban classes too. In this article an innovative hierarchical model is proposed for object-based classification of complicated urban areas. In this way, beside of feature space optimization in a multi scale analysis, rule based and fuzzy nearest neighbor approaches are used as the object-based classification strategies. The proposed method is implemented on an urban IKONOS image where 84% and 87%overall accuracies are obtained for rule based and fuzzy nearest neighbor classification approaches respectively. The implementation of the devised algorithm on another IKONOS image moved its general ability to other urban areas. Keywords: Land cover classification, Rule based, Object based, Fuzzy nearest neighbor, Complicated urban areas.