Amarsaikhan, D., Blotevogel, H.H., Van Genderen, J.L., Ganzorig, M., Gantuya, R. & Nergui, B., 2010, Fusing High-Resolution SAR and Optical Imagery for Improved Urban Land Cover Study and Classification, International Journal of Image and Data Fusion, 1(1), PP. 83-97.
Bassa, Z., Bob, U., Szantoi, Z. & Ismail, R., 2016, Land Cover and Land Use Mapping of the isimangaliso Wetland Park, South Africa: Comparison of Oblique and Orthogonal Random Forest Algorithms, Journal of Applied Remote Sensing, 1-22, P. 22.
Boehner, J., Koethe, R., Conrad, O., Gross, J., Ringeler, A. & Selige, T., 2002, Soil Regionalisation by Means of Terrain Analysis and Process Parameterisation, In: Micheli, E., Nachtergaele, F., Montanarella, L. [Ed.]: Soil Classification 2001, European Soil Bureau, Research Report No. 7, EUR 20398 EN, Luxembourg, PP. 213-222.
Breiman, L., 2001, Random Forests, Machine Learning, 45(1), PP. 5-32.
Chen, M., Su, W., Li, L., Zhang, C., Yue, A. & Li, H., 2009, Comparison of Pixel-Based and Object-Oriented Knowledge-Based Classification Methods Using SPOT5 Imagery, WSEAS Transactions on Information Science and Applications, 6(3), PP. 477-489.
Cloude, S.R. & Pottier, E., 1997, An Entropy Based Classification Scheme for Land Applications of Polarimetric SAR, IEEE Transactions on Geoscience and Remote Sensing, 35(1), PP. 68-78.
Congalton, R.G., 1991, A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data, Remote Sensing of Environment, 37(1), PP. 35-46.
Dadras Javan, F., Mortazavi, F.S., Moradi, F. & Toosi, A., 2019, New Hybrid Pan-Sharpening Method Based on Type-1 Fuzzy-Dwt Strategy, International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences.
Darwish, A., Leukert, K. & Reinhardt, W., 2003, Image Segmentation for the Purpose of Object-Based Classification, In IGARSS 2003, 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477) (Vol. 3, PP. 2039-2041), IEEE.
de Almeida Furtado, L.F.,
Freire Silva, T.S. &
de Moraes Novo, E.M.L., 2016,
Dual-Season and Full-Polarimetric C Band SAR Assessment for Vegetation Mapping in the Amazon Várzea Wetlands, Remote Sensing of Environment, 174, PP. 212-222.
Frohn, R.C., Autrey, B.C., Lane, C.R. & Reif, M., 2011, Segmentation and Object-Oriented Classification of Wetlands in a Karst Florida Landscape Using Multi-Season Landsat-7 ETM+ Imagery, International Journal of Remote Sensing, 32(5), PP. 1471-1489.
Hackman, K.O., Gong, P. & Wang, J., 2017, New Land-Cover Maps of Ghana for 2015 Using Landsat 8 and Three Popular Classifiers for Biodiversity Assessment, Int. J. Remote Sens., 38(14), PP. 4008-4021.
Holobâcă, I.H., Ivan, K. & Alexe, M., 2019, Extracting Built-Up Areas from Sentinel-1 Imagery Using Land-Cover Classification and Texture Analysis, International Journal of Remote Sensing, 40(20), PP. 8054-8069.
Ienco, D., Gaetano, R., Interdonato, R., Ose, K. & Minh, D.H.T., 2019, Combining Sentinel-1 and Sentinel-2 Time Series via RNN for Object-Based Land Cover Classification, In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium (PP. 4881-4884), IEEE.
Jiao, L., Liu, Y. & Li, H., 2012, Characterizing Land-Use Classes in Remote Sensing Imagery by Shape Metrics, ISPRS Journal of Photogrammetry and Remote Sensing, 72, PP. 46-55.
Jung, R., Adolph, W., Ehlers, M. & Farke, H., 2015, A Multi-Sensor Approach for Detecting the Different Land Covers of Tidal Flats in the German Wadden Sea — A Case Study at Norderney, Remote Sensing of Environment, 170, PP. 188-202.
Karan, S.K. & Samadder, S.R., 2018, A Comparison of Different Land-Use Classification Techniques for Accurate Monitoring of Degraded Coal-Mining Areas, Environ. Earth Sci., 77(20), P. 2583.
Kavzoglu, T., & Colkesen, I. (2009). A kernel functions analysis for support vector machines for land cover classification. International Journal of Applied Earth Observation and Geoinformation, 11(5), 352-359.
Lee, J.S., 1981, Refined Filtering of Image Noise Using Local Statistics, Computer Graphics and Image Processing, 15(4), PP. 380-389.
Lee, C. A., Gasster, S. D., Plaza, A., Chang, C. I., & Huang, B. (2011). Recent developments in high performance computing for remote sensing: A review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(3), 508-527.
Li, G., Lu, D., Moran, E., Dutra, L. & Batistella, M., 2012, A Comparative Analysis of ALOS PALSAR L-Band and RADARSAT-2 C-Band Data for Land-Cover Classification in a Tropical Moist Region, ISPRS Journal of Photogrammetry and Remote Sensing, 70, PP. 26-38.
Lindquist, E.J. & D’Annunzio, R., 2016, Assessing Global Forest Land-Use Change by Object-Based Image Analysis, Remote Sens, 8(8), P. 678.
Maxwell, A.E., Warner, T.A. & Strager, M.P., 2016, Predicting Palustrine Wetland Probability Using Random Forest Machine Learning and Digital Elevation Data-Derived Terrain Variables, Photogrammetric Engineering & Remote Sensing, 82(6), PP. 437-447.
Mehravar, S., Dadrass Javan, F., Samadzadegan, F., Toosi, A., Moghimi, A., Khatami, R. & Stein, A., 2022, Varying Weighted Spatial Quality Assessment for High Resolution Satellite Image Pan-Sharpening, International Journal of Image and Data Fusion, 13(1), PP. 44-70.
Moradi, F., Javan, F.D. & Toosi, A., 2021, Tree Detection Using UAV Based Imagery System Based on Random Forest Classification, The 2nd International Electronic Conference on Forests — Sustainable Forests: Ecology, Management, Products and Trade.
Niu, X., & Ban, Y. (2013). Multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using an object-based support vector machine and a rule-based approach. International journal of remote sensing, 34(1), 1-26.
Niculescu, S., Lardeux, C., & Hanganu, J. (2017). Synergy between Sentinel-1 radar time series and Sentinel-2 optical for the mapping of restored areas in Danube delta. Proceedings of the International Cartographic Association, 1.
Paneque-Gálvez, J., Mas, J.-F., Moré, G., Cristóbal, J., Orta-Martínez, M., Luz, A.C., Guèze, M., Macía, M.J. & Reyes-García, V., 2013, Enhanced Land Use/Cover Classification of Heterogeneous Tropical Landscapes Using Support Vector Machines and Textural Homogeneity, International Journal of Applied Earth Observation and Geoinformation, 23, PP. 372-383.
Petropoulos, G. P., Kalaitzidis, C., & Vadrevu, K. P. (2012). Support vector machines and object-based classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery. Computers & Geosciences, 41, 99-107.
Rahman, R. & Saha, S.K., 2008, Multi-Resolution Segmentation for Object-Based Classification and Accuracy Assessment of Land Use/Land Cover Classification Using Remotely Sensed data, Journal of the Indian Society of Remote Sensing, 36(2), PP. 189-201.
Rastner, P. (2014). The local glaciers and ice caps on Greenland: their mapping, separation from the ice sheet and their climate sensitivity (Doctoral dissertation, University of Zurich).
Rogan, J., Franklin, J., Stow, D., Miller, J., Woodcock, C., & Roberts, D. (2008). Mapping land-cover modifications over large areas: A comparison of machine learning algorithms. Remote Sensing of Environment, 112(5), 2272-2283.
Senf, C.,
Hostert, P. &
van der Linden, S., 2012,
Using MODIS Time Series and Random Forests Classification for Mapping Land Use in South-East Asia, 2012 IEEE International Geoscience and Remote Sensing Symposium, IEEE.
Shitole, S., De, S., Rao, Y.S., Mohan, B.K. & Das, A., 2015, Selection of Suitable Window Size for Speckle Reduction and Deblurring using SOFM in Polarimetric SAR Images, Journal of the Indian Society of Remote Sensing, 43(4), PP. 739-750.
Sonobe, R., Tani, H., Wang, X., Kobayashi, N. & Shimamura, H., 2014, Parameter Tuning in the Support Vector Machine and Random Forest and their Performances in Cross- and Same-Year Crop Classification Using TerraSAR-X, International Journal of Remote Sensing, 35(23), PP. 7898-7909.
Stromann, O., Nascetti, A., Yousif, O. & Ban, Y., 2020, Dimensionality Reduction and Feature Selection for Object-Based Land Cover Classification Based on Sentinel-1 and Sentinel-2 Time Series Using Google Earth Engine, Remote Sensing, 12(1), P. 76.
Talukdar, S., Singha, P., Mahato, S., Shahfahad, Pal, S., Liou, Y.-A. & Rahman, A., 2020, Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review, Remote Sens, 12(7), P. 1135.
Taşdemir, K., Milenov, P. & Tapsall, B., 2012, A Hybrid Method Combining SOM-Based Clustering and Object-Based Analysis for Identifying Land in Good Agricultural Condition, Computers and Electronics in Agriculture, 83, PP. 92-101.
Thompson, M., 1996, A Standard Land-Cover Classification Scheme for Remote-Sensing Applications in South Africa, South African Journal of Science, 92(1), PP. 34-42.
Toutin, T. (2004). Geometric processing of remote sensing images: models, algorithms and methods. International journal of remote sensing, 25(10), 1893-1924.
Xie, L., Zhang, H., Wang, C. & Shan, Z., 2015, Similarity Analysis of Entropy/Alpha Decomposition between HH/VV Dual- and Quad-Polarization SAR Data, Remote Sensing Letters, 6(3), PP. 228-237.
Xu, H., 2006, Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery, International Journal of Remote Sensing, 27(14), PP. 3025-3033.
Yesuph, A.Y. & Dagnew, A.B., 2019, Land Use/Cover Spatiotemporal Dynamics, Driving Forces and Implications at the Beshillo Catchment of the Blue Nile Basin, North Eastern Highlands of Ethiopia, Environ. Syst. Res., 8(1), P. 87.
Zhang, C. & Xie, Z., 2013, Object-Based Vegetation Mapping in the Kissimmee River Watershed Using HyMap Data and Machine Learning Techniques, Wetlands, 33(2), PP. 233-244.
Zhou, Y., Wang, H., Xu, F. & Jin, Y.Q., 2016, Polarimetric SAR Image Classification Using Deep Convolutional Neural Networks, IEEE Geoscience and Remote Sensing Letters, 13(12), PP. 1935-1939.