ارزیابی و پیش‌بینی روند تغییرات مکانی کاربری زمین در حوزه تالاب انزلی با استفاده از مدل LCM

نوع مقاله : علمی - پژوهشی

نویسندگان

1 . دانشجوی دکتری، گروه محیط زیست، دانشکده منابع طبیعی و محیط زیست، دانشگاه ملایر، ملایر، و عضو هیات علمی دانشگاه صنعتی خاتم الانبیا، بهبهان،ایران

2 استادیار، گروه محیط زیست، دانشکده منابع طبیعی و محیط زیست، دانشگاه ملایر، ملایر، ایران

3 دانشیار، گروه احیا مناطق خشک و کوهستانی، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران.

چکیده

فعالیت‌های طبیعی و انسانی در مناطق ساحلی، باعث تغییرات پویای کاربری و پوشش زمین می‌شود. رشد سریع جمعیت در این مناطق، باعث تسریع در روند تغییر کاربری‌ها و پوشش طبیعی زمین و انتقال به کاربری‌های مسکونی و توسعه زیرساخت‌ها می‌شود. این پژوهش، به‌منظور بررسی و مدل‌سازی تغییرات کاربری زمین در حوزه تالاب انزلی بین سال‌های 1975 تا 2015، با استفاده از تصاویر ماهواره‌ای و پیش‌بینی تغییرات احتمالی کاربری زمین در سال 2045 با استفاده از مدل LCM انجام شده است. به منظور دستیابی به تغییـرات کمی و کیفـی رخ‌داده در منطقه مورد مطالعه، نقشه‌های کاربری حوزه آبخیز تالاب انزلی از تصاویر ماهواره لندست سال‌های 1975، 1989، 2000 و 2015 استفاده شده است. بر این اساس، شش طبقه کاربری کشاورزی، مرتع، جنگل، اراضی تالابی، اراضی مسکونی و تالاب با استفاده از روش طبقه‌بندی الگوریتم حداکثر احتمال مـدنظـر قـرار گرفـت.  ارزیابی صحت نقشه‌های کاربری زمین مستخرج از تصاویر ماهواره‌ای به دو صورت دقت کلی و ضریب کاپا به ترتیب برابر 87 درصد و 0.71 با استفاده از 323 نقطه از طریق الگوریتم نمونه‌گیری لایه‌ای تصادفی محاسبه شد. تجزیه و تحلیل ماتریس تشخیص تغییرات نشان می‌دهد که در طی دوره زمانی 1975 تا 2015 کل تغییرات و انتقال کاربری‌های مختلف به یکدیگر 76648.14 هکتار است. بیشترین تغییرات بین کاربری‌های مختلف در طی این زمان مربوط به انتقال کاربری‌های مختلف به کاربری کشاورزی به میزان 49827.69 هکتار است که این میزان معادل 65 درصد کل تغییرات کاربری‌های مختلف است. در تغییر کاربری‌های صورت گرفته به کشاورزی، کاربری‌های جنگل (64 درصد)، مرتع(16 درصد)، اراضی تالابی (10 درصد)، تالاب(8 درصد) و مناطق مسکونی (2 درصد) بیشترین سهم را دارند. در طول مدت مطالعه، گسترش کاربری مسکونی همواره روندی مثبت و منطبق بر افزایش جمعیت داشته است. مدل‌سازی پتانسیل انتقال با استفاده از شبکه عصبی مصنوعی و استفاده از 7 متغیر و 8 زیر مدل انجام شد. نتایج مدل‌سازی با استفاده از شبکه عصبی در اکثر سناریوها صحت بالایی (60.14 تا 88.73 درصد) را نشان داد. به منظور بررسی صحت مدل‌سازی ضریب کاپای استاندارد (0.8948) و مقادیر خطای Null Successes  (77.9 درصد), Hits (3.1 درصد), Misses (15.9 درصد), False Alarms (3.1 درصد) محاسبه و وضعیت صحت برای موقعیت و کمیت پیکسل‌های هر طبقه به دست آمد. نسبت Hits به کل پیکسل‌های تغییر کرده (14.2) بیانگر قابل‌قبول بودن نتایج مدل در پیش‌بینی تغییرات کاربری زمین است. مقایســه نتایج حاصــل از تبدیل و تغییر کلاس‌ کـاربری‌هـای زمین در دوره زمـانی 2015 تـا 2045 (پیش‌بینی‌شده) در منطقه، نشـــان می‌دهد اگر روند بهره‌برداری از ســـرزمین با شـــیوه مدیریت فعلی ادامه یابد، 10036.26 هکتار اراضی جنگلی به اراضی کشاورزی (67.69 درصد)، مرتع(32.04 درصد)، مناطق مسکونی(0.16 درصد) و اراضی تالابی تبدیل می شود و با احتساب انتقال سایر کاربری‌ها به کاربری جنگل در مجموع در طول این مدت، شاهد کاهش 9963.36 هکتار جنگل خواهیم بود. به طور کلی در این مدت اراضی کشاورزی، مرتع و مناطق مسکونی افزایش یافته و کاربری‌های جنگل، تالاب و اراضی تالابی کاهش خواهد داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment and prediction of land use changes in the Anzali wetland Basin, Based on Land Change Modeler (LCM)

نویسندگان [English]

  • Reza shakerir 1
  • kamran shayesteh 2
  • Mehdi ghorbani 3
1 Ph.D. Candidate, Department of Environmental Science, Faculty of Natural Resources and Environment, Malayer University, Malayer, and Faculty member of Khatam Al-Anbia University of Technology, Behbahan, Iran
2 Assistant Professor, Department of Environmental Science, Faculty of Natural Resources and Environment, Malayer University, Malayer, Iran
3 Associate Professor, Rehabilitation of Mountainous and Arid Regions Department, Natural Resources Faculty, University of Tehran, Karaj, Iran.
چکیده [English]

Natural and human activities in coastal areas cause dynamic changes in land use and land cover. Rapid population growth in these areas accelerates the process of land use and natural land cover changes, and the transition to residential use and infrastructure development. This research was conducted to investigate and modeling land use changes in Anzali wetland basin between 1975 and 2015 using satellite imagery and predicting possible land use change in 2045 using the LCM model. In order to achieve quantitative and qualitative changes in the study area, the land use maps of the Anzali wetland basin have been produced based on Landsat satellite images for years 1975, 1989, 2000, and 2015. For this purpose, six land use classes including agriculture, rangeland, forest, wetland areas, urban lands, and wetland surface were considered. The accuracy of the land use maps was verified by overall accuracy and kappa coefficients using 323 points based on stratified random sampling and these two parameters were 87% and 0.71, respectively. The LCM model was used to detect and map the changes of different land use categories in the Anzali wetland basin during the periods 1975-1989, 1989-2000, 2000-2015, and predict land use changes in 2045. Analysis of the change detection matrix shows that during the period 1975 to 2015, the total change and transfer of different land uses to each other is 76648.14 hectares. The most changes among different land use during this time are related to the transfer of different land uses to agriculture for 49827.69 hectares, which is equivalent to 65% of the total changes of different land uses. Changing of different land uses to agricultural use is the main change in the uses of this period. forests (64%), rangelands (16%), wetland areas (10%), wetland surface (8%) and residential areas (2 %) have the largest share, respectively. Throughout the study, the expansion of urban land use has always been a positive trend in line with population growth. Based on these changes and by taking 7 independent variable and 8 sub-models, transition potential modeling was done using Artificial Neural Network. The results of modeling in most scenarios showed high accuracy (60.14 to 88.73 percent). To verify modeling accuracy, the standard Kappa coefficient (0.8948) and Null Successes error (77.9%), Hits (3.1%), Misses (15.9%), False Alarms (3.1%) were calculated and accuracy of the position and number of pixels in each class was determined. The ratio of Hits to the total pixels has changed (14.2) indicates that model results are acceptable in predicting land-use changes. Comparison of the results of the changes and conversion of land use classes in the period 2015 to 2045 (predicted) in the region shows that if the land utilization trend continues with current management mode, 10036.26 hectares of forest lands would change to agricultural lands (67.69%), rangeland (32.04 %), urban areas (0.16 %) and wetland surface, and considering the transfer of other uses to forestry, eventually the 9963.36 hectares of forest will be reduced during this period. In general, agriculture, rangeland, and urban areas will increase during this period.

کلیدواژه‌ها [English]

  • : land use
  • Land Change Modeler (LCM)
  • prediction
  • Anzali Wetland
  1. اداره کل مهندسی بنادر و سواحل، 1393، ژئومورفولوژی در مدیریت یکپارچه مناطق ساحلی ایران: سواحل دریای خزر: برگرفته از مطالعات طرح مدیریت یکپارچه مناطق ساحلی ایران (ICZM)، جلد اول ( سواحل دریای خزر)، نشر سازمان بنادر و کشتیرانی، 88ص.
  2. بالی.، ع، منوری، س.م، ریاضی، ب.، خراسانی، ن. و خیرخواه م.م، 1391، کاربرد سنجش از راه دور در بررسی روند تغییرات کاربری اراضی با تاکید بر توسعه شهری (تالاب انزلی)، علوم محیطی، 11(1): 73-80 .
  3. بهزادی، ج.، 1390، پایش خشکسالی و تحلیل ویژگی آن در استان گیلان، فصلنامه جغرافیا و آمایش سرزمین، 1(1): 21-36.
  4. پارسامهر، ک. و غلامعلی‌فرد، م.، 1395، معرفی کاربردی مدل‌سازی پروژه‌های REDD: راهکاری برای کاهش پیامدهای تغییر اقلیم، پژوهش‌های محیط‌زیست، 7(13): 189-202.
  5. زبردست، ل و جعفری، 1390، ارزیابی روند تغییرات تالاب انزلی با استفاده از سنجش‌از دور و ارائه راه‌حل مدیریتی، محیط‌شناسی، 37(57): 1-8.
  6. شریفی‌کیا، م.، شایان، س. و ولی.، م.، 1396، تعیین تغییرات دینامیک خط ساحل بخش شرقی دریای خزر به کمک داده‌های چند زمانه/چند سنجده‌ای، برنامه‌ریزی و آمایش فضا، 21(4): 122-139.
  7. طالشی، م.، رحیمی‌پورشیخانی‌نژاد، م.ع.، 1396، الگویابی تخصیص پایدار کاربری‌زمین در نواحی روستایی شرق گیلان، فصلنامه اقتصاد فضا و توسعه روستایی، 6(22): 119-146.
  8. طیفوری، و. و اکبری، ص.، 1396، بررسی جمعیت و گزیده شاخص‌های جمعیت استان گیلان سال‌های 1345-95: سازمان مدیریت و برنامه‌ریزی استان گیلان، معاونت آمار و اطلاعات.
  9. علی‌محمدی، ع.، موسیوند ع.‌ج. و شایان، س.، 1388، پیش‌بینی تغییرات کاربری اراضی و پوشش زمین با استفاده از تصاویر ماهواره‌ای و مدل زنجیره‌ای مارکوف، برنامه‌ریزی و آمایش فضا، 14(3): 117-130.
  10. غلامعلی‌فرد، م.، جورابیان‌شوشتری، ش.، حسینی‌کهنوج، س.ح. و میرزایی م.، 1391، مدل سازی تغییرات کاربری اراضی سواحل استان مازندران با استفاده از LCM در محیط GIS، محیط‌شناسی، 38(4): 109-124.
  11. فلاح، م. و فاخران اصفهانی، س.، 1394، اثرات تغییر کاربری اراضی بر کیفیت آب تالاب بین‌المللی انزلی، اقیانوس‌شناسی، 6(24): 53-59.
  12. فلاحت کار، س.، حسینی، س.م.، ماهینی، ع.س و ایوبی، ش.، 1395، پیش‌بینی تغییرات کاربری اراضی با استفاده از مدل LCM، پژوهش‌های محیط‌زیست، 7(13): 163-174.
  13. جایکا با همکاری سازمان حفاظت از محیط‌زیست و وزارت جهاد کشاورزی،1383، گزارش سالیانه وضعیت محیط‌زیست تالاب انزلی و حوزه آبخیز آن.
  14. مکرونی، س.، سبزقبایی، غ.ر.، یوسفی خانقاه، ش. و سلطانیان، س.، 1395، آشکارسازی روند تغییرات کاربری اراضی تالاب هورالعظیم با استفاده از تکنیک سنجش‌ازدور و سیستم اطلاعات جغرافیایی، سنجش‌ازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 7(3): 89-99.
  15. یوسفی‌روشن، م.ر. و کردوانی، پرویز.، 1392، نوسان سطح آب و کارایی حریم دریای خزر (خط ساحلی محدوده شهرستان بابلسر)، پژوهش‌های دانش زمین، 4(2): 1-16.
  16. Amin A ,Fazal S. 2012. Land transformation analysis using remote sensing and GIS techniques (a case study). Journal of Geographic Information System, 4(229): 229-236, doi:10.4236/jgis.2012.43027
  17. Areendran G, Raj K, Mazumdar S, Sharma A. 2017. Land use and land cover change analysis for Kosi River wildlife corridor in Terai Arc Landscape of Northern India: Implications for future management. Tropical Ecology, 58(1): 139–149, http://tropecol.com/pdf/open/PDF581/13. Areendranetal.pdf
  18. Chen H, Pontius R. G. 2010. Diagnostic tools to evaluate a spatial land change projection along a gradient of an explanatory variable. Landscape Ecology, 25: 1319-1331. https://doi.org/ 10.1007/s10980-010-9519-5
  19. Eastman J. R. 2009. IDRISI Taiga guide to GIS and image processing. Clark Labs Clark University, Worcester, MA.
  20. Estoque R.C, Murayama Y. 2012. Introducing new measures of accuracy for land-use/cover change modeling. Tsukuba geoenviron-mental sciences, 8:3-7. https://www. researchgate. net/ publication/ 261296147
  21. Jain R, Jain K, Ali S. R. 2017. Modeling Urban Land Cover Growth Dynamics Based on Land Change Modeler (LCM) Using Remote Sensing: A Case Study of Gurgaon, India. Advances in Computa-tional Sciences and Technology, 10: 2947-2961.
  22. Joshi R. R, Warthe M, Dwivedi S, Vijay R, Chakrabarti T. 2011. Monitoring changes in land use land cover of Yamuna riverbed in Delhi: a multi-temporal analysis. International journal of remote sensing, 32: 9547-9558.
  23. Kaliraj S, Chandrasekar N, Ramachandran K, Srinivas Y, Saravanan S. 2017. Coastal landuse and land cover change and transformations of Kanyakumari coast, India using remote sensing and GIS. The Egyptian Journal of Remote Sensing and Space Science. 2: 169-185. https:// doi.org /10.1016 /j.ejrs.2017. 04.003
  24. Kawakubo F, Morato R, Nader R, Luchiari A. 2011. Mapping changes in coastline geomorphic features using Landsat TM and ETM+ imagery: examples in southeastern Brazil. International journal of remote sensing, 32: 2547-2562. https://doi.org/ 10.1080/ 0143116 1003698419
  25. Khoi D, Murayama Y. 2010. Forecasting Areas Vulnerable to Forest Conversion in the Tam Dao National Park Region, Vietnam. Remote Sensing, 2 (5): 1249-1272. https://doi.org/10.3390/rs 2051249
  26. Kolb M, Mas J. F, Galicia L. 2013. Evaluating drivers of land-use change and transition potential models in a complex landscape in Southern Mexico. International Journal of Geographical Information Science, 27: 1804-1827. https://doi.org/10.1080/13658816.2013.770517
  27. Kumar A, Jayappa K. 2009. Long and short-term shoreline changes along Mangalore coast, India. International Journal of Environmental Research, 3: 177-188. DOI: 10.22059/IJER.2009.46
  28. Liu J, Li J, Qin K, Zhou Z, Yang X, Li T. 2017. Changes in land-uses and ecosystem services under multi-scenarios simulation. Science of The Total Environment, 586: 522-526. https:// doi.org/10 .1016/j.scitotenv.2017. 02.005
  29. Liu X. H, Skidmore A, Vanoosten H. 2002. Integration of classification methods for improvement of land-cover map accuracy. ISPRS Journal of Photogrammetry and Remote Sensing, 56: 257-268. https://doi.org/ 10.1016/ S0924-2716(02)00061-8
  30. Mas J.F, Kolb M, Paegel0w M, Olmedo M.T.C, Houet T. 2014. Inductive pattern-based land use/cover change models: A comparison of four software packages. Environmental Modelling & Software, 51: 94-111. https://doi.org/10.1016/ j.envsoft.2013.09.010
  31. Mishra V.N, Rai P.K, Mohan K. 2014. Prediction of land use changes based on land change modeler (LCM) using remote sensing: a case study of Muzaffarpur (Bihar), India. Journal of the Geographical Institute" Jovan Cvijic", SASA, 64(1): 111-127. DOI: 10.2298/IJGI1401111M
  32. Olemedo M.T.C, Pontius R G, Paegelow M, Mas J.F. 2015. Comparison of simulation models in terms of quantity and allocation of land change. Environ-mental Modelling & Software, 69: 214-221. https://doi.org/ 10.1016/ j.envsoft. 2015.03.003
  33. Paegelow M, Camacho Olmedo M.T, Mas J.F, Houet T. 2014. Benchmarking of LUCC modelling tools by various validation techniques and error analysis. Cybergeo: European Journal of Geography. DOI: 10.4000/cybergeo. 26610
  34. Paegelow M, Camacho Olmedo M.T, Mas J.F, Houet T, Pontius JR, R. G. J. I. J. O. G. I. S. 2013. Land change modelling: moving beyond projections. International Journal of Geographical Information Science, 27(9): 1691–1695, doi.org /10.1080 /13658816. 2013. 819104
  35. Perez-vega A, Mas J.F, Ligmann-Zielinska A. 2012. Comparing two approaches to land use/cover change modeling and their implications for the assessment of biodiversity loss in a deciduous tropical forest. Environmental Modelling & Software, 29: 11-23. https://doi.org/ 10.1016/ j. envsoft.2011.09.011
  36. Pontius G.R, Malanson J. 2005. Comparison of the structure and accuracy of two land change models. International Journal of Geogra-phical Information Science, 19: 243-265. https://doi.org/10.1080/ 13658810410001713434
  37. Rawat J, Biswas V, Kumar M. 2013. Changes in land use/cover using geospatial techniques: A case study of Ramnagar town area, district Nainital, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science, 16: 111-117. https://doi.org/ 10.1016/ j.ejrs.2013.04.002
  38. Rawat J, Kumar M. 2015. Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science, 18: 77-84.https://doi.org/ 10.1016/j.ejrs .2015.02.002
  39. Reddy C.S, Singh S, Dadhwal V, Jha C, Rao N. R, Diwakar P. 2017. Predictive modelling of the spatial pattern of past and future forest cover changes in India. Journal of Earth System Science, 126)8):1-16. https://doi.org/10.1007/s12040-016-0786-7
  40. Richards J.A, Richards J. 1999. Remote sensing digital image analysis, Springer. https://doi.org /10 .1007/978-3-642-30062-2
  41. Sloan S, Pelletier J. 2012. How accurately may we project tropical forest-cover change? A validation of a forward-looking baseline for REDD. Global Environmental Change, 22:440-453. https://doi.org/10.1016/j.gloenvcha.2012.02.001
  42. Thapa R.B, Murayama A.Y. 2011. Urban growth modeling of Kathmandu metropolitan region, Nepal. Computers, Environment and Urban Systems, 35: 25-34. https:// doi.org/ 10.1016 /j.compenvurbsys .2010.07. 005
  43. Tiwari A, Suresh M, Rai A.K. 2014. Ecological Planning for Sustainable Development with a Green Technology: GIS. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 3:2278-1323. http://ijarcet.org/ wp-content/ uploads /IJARCET-VOL-3-ISSUE-3-636-641.pdf
  44. Van Vliet J, Bregt A.K, Hagen-Zanker A. 2011. Revisiting Kappa to account for change in the accuracy assessment of land-use change models. Ecological modelling, 222:1367-1375. https://doi. org /10.1016/ j.ecolmodel. 2011.01.017
  45. Xiuwan C. 2002. Using remote sensing and GIS to analyse land cover change and its impacts on regional sustainable development. International Journal of Remote Sensing, 23:107-124. https:// doi.org/10.1080/01431160010007051
  46. Yagoub M, Kolan G.R. 2006. Monitoring coastal zone land use and land cover changes of Abu Dhabi using remote sensing. Journal of the Indian society of remote sensing, 34:57-68. https:// doi.org/10.1007/BF02990747
  47. Yuan F, Sawaya K.E, Loeffelholz B.C, Bauer M.E. 2005. Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote sensing of Environment, 98: 317-328. https:// doi.org/10.1016/j.rse.2005.08.006