شناسایی الگوهای مکانی و زمانی فعالیت‌های شهری با استفاده از داده‌های تلفن همراه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه حمل‌ونقل‌‌، دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران، تهران، ایران

2 استاد گروه حمل‌ونقل‌‌، دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران، تهران، ایران

3 استادیار دانشکده مهندسی علوم زمین، دانشگاه صنعتی اراک، مرکزی، ایران

چکیده

سابقه و هدف: در سال‌های اخیر استفاده از کلان‌داده‌های تلفن همراه در مطالعات حمل‌ونقلی بسیار مورد توجه متخصصان قرار گرفته است. منشأ ایجاد سفرهای شهری، ‌نیاز افراد به انجام دادن فعالیت است. ازطرفی، سطح فعالیت‌های شهری و الگوی آن نیز در زمان‌ها و مکان‌های مختلف متغیر است. داده‌های تلفن همراه، به‌عنوان نوعی از داده‌های پیوستة مکانی زمانی، حضور افراد در مکان‌ها و زمان‌های مختلف را ثبت می‌کنند و بنابراین این داده‌ها با نرخ نفوذ بالا به‌منظور شناسایی سطح فعالیت شهری و استخراج الگوی فعالیت افراد در زمان‌های مختلف، مناسب و پرکاربرد هستند. در این پژوهش، با توجه به اهمیت ساختار فرهنگی، مذهبی، گردشگری و همچنین وجود مراکز درمانی کلان‌شهر شیراز، این شهر به‌عنوان منطقة مطالعاتی در نظر گرفته شده است. لذا تحلیل الگوی مکانی و زمانی سفرهای شهری با به‌کارگیری داده‌های پیوستة مکانی زمانی همچون داده‌های تلفن همراه، می‌تواند به بهبود مدیریت سیستم حمل‌ونقل و برنامه‌ریزی و سیاست‌گذاری صحیح این شهر کمک شایان توجهی کند.
مواد و روش‌ها: متغیر مورد بررسی در این مطالعه، تراکم سطح فعالیت در یک برش زمانی و یک واحد مکانی مشخص است. فعالیت به‌معنای تعداد افرادی است که به‌منظور انجام فعالیتی با هدف معین ناحیه‌ای را ترک و یا به ناحیه‌ای وارد می‌شوند. تراکم سطح فعالیت نیز بیانگر میزان فعالیت در واحد مساحت هر ناحیة ترافیکی است. به‌منظور بررسی تراکم سطح فعالیت افراد در سطح ۳۲۱ ناحیة ترافیکی شهر شیراز، داده‌های تلفن همراه به‌مدت یک هفته (۰۳/۰۴/۱۴۰۰ تا ۰۹/۰۴/۱۴۰۰) در شهر شیراز جمع‌آوری شد. پس از پاکسازی و آماده‌سازی داده‌ها، نقاط توقف افراد و محل خانة آن‌ها شناسایی شد. ضمن به‌کارگیری ضریب تعمیم مناسب، سطح فعالیت در نواحی ترافیکی در بازه‌های زمانی یک‌ساعته در روزهای کاری، نیمه‌کاری و غیرکاری برآورد شد. در ادامه میزان خودهمبستگی مکانی سطح فعالیت، با استفاده از شاخص خودهمبستگی مکانی Moran’s I عمومی و محلی در روزهای کاری، نیمه‌کاری و غیرکاری بررسی شد. سپس، با استفاده از تحلیل‌های اکتشافی سری زمانی فعالیت‌های شهری و تحلیل یکنواختی سری زمانی (SNHT)، الگوی زمانی سطح فعالیت‌ها، بازة زمانی آغاز فعالیت‌ها، بازة اوج میان‌روز، بازة اوج عصر و سایر مشخصه‌های سری زمانی بررسی شد.
 نتایج: در تحلیل مکانی میزان خودهمبستگی مکانی سطح فعالیت، با استفاده از شاخص خودهمبستگی مکانی Moran’s I عمومی و محلی در روزهای کاری، نیمه‌کاری و غیرکاری بررسی و وجود خودهمبستگی مکانی مثبت و معنادار فعالیت در واحد مساحت نواحی ترافیکی (P-Value < 0.001) تأیید شد. لذا سطح فعالیت نواحی، متأثر از روابط مکانی در محدودة مطالعاتی است و نواحی مهم با تراکم فعالیت بالا در مناطق مرکزی شهری شناسایی شدند. نتایج تحلیل‌های سری زمانی اکتشافی نمایانگر تغییرات ساعتی در الگوی زمانی سطح فعالیت‌هاست. همچنین در روزهای کاری فعالیت‌های بیشتری نسبت به روزهای غیرکاری و نیمه‌کاری انجام می‌شود. سری زمانی در نیمی از روز نیمه‌کاری کاملاً مشابه با روزهای کاری است و پس از ساعات اداری با کاهش سطح فعالیت روندی بین روزهای کاری و روز غیر‌کاری تجربه می‌کند. با بررسی سری زمانی فعالیت‌ها بازة اوج میان‌روز در ساعت 12 تا ساعت 14 و بازة اوج عصر در ساعت 20 تا ساعت 22 رخ می‌دهد. همچنین کمترین سطح فعالیت روزانه بین ساعت ۳ تا ۶ صبح تشخیص داده شد. با استفاده از آزمون یکنواختی سری زمانی نیز بازة زمانی آغاز فعالیت‌ها در روزهای کاری و نیمه‎کاری در ساعت 8 صبح و در روزهای غیرکاری ساعت 9 صبح شناسایی شد. شایان ذکر است به‌منظور اعتبارسنجی جمعیت ساکن شناسایی‌شده و ضرایب تعمیم، همبستگی مکانی بین جمعیت برآوردشده از داده‌های تلفن همراه و جمعیت واقعی هریک از نواحی ترافیکی بررسی شد که برابر با ۸۲/۰ است و از نظر آماری معنادار و قابل ‌قبول است.
نتیجه‌گیری: نتایج این مطالعه می‌تواند در فرایند برنامه‌ریزی و سیاست‌گذاری صحیح، مدیریت تقاضا و حضور افراد در مکان‌های پرتراکم شهر و در بازة زمانی دلخواه و همچنین تحلیل‌های مرتبط با اثرات زیست‌محیطی حمل‌و‌نقل شهری تأثیرگذار باشد. با در دسترس بودن داده‌های تلفن همراه با دقت مناسب در سایر مراکز فعالیتی با مقیاس‌های مختلف (یک محدودة ترافیکی، محدودة شهر، استان و حتی کل کشور)، می‌توان الگوهای مختلف فعالیت شهری و از جمله نتایج این مطالعه را استخراج کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Identifying Spatial and Temporal Patterns of Urban Activities Using Mobile Phone Data

نویسندگان [English]

  • Hanieh Zhendeh Khatibi 1
  • Afshin Shariat Mohaymany 2
  • Matin Shahri 3
1 Ph.D. Candidate, School of Civil Engineering, Iran University of Science and Technology,Tehran, Iran
2 Professor, School of Civil Engineering, Iran University of Science and Technology,Tehran, Iran
3 Assistant Professor, School of Geoscience Engineering, Arak University of Technology, Arak, Iran
چکیده [English]

Introduction: Recently, the use of big data from mobile devices has received considerable attention in transportation studies. The need to do activities is the main inducement for urban trip generation. Furthermore, urban activities and their patterns vary both over space and time. Mobile phone data, as a kind of continuous spatiotemporal data, records the location of people at different times. Therefore such data is suitable for the estimation of urban activity levels and the detection of patterns. In this study, we selected Shiraz as the study area due to its cultural, religious, and tourist significance, as well as the presence of major healthcare centres in the city. The analysis of spatial and temporal patterns of urban trips using continuous spatiotemporal data, such as mobile phone records, can significantly contribute to the improvement of transportation system management, planning, and policy-making for Shiraz.
Materials and Methods: The variable under investigation in this study is the activity density within a specific time interval and a defined spatial unit. Activity is defined as the number of individuals who either enter or leave a specific area for a specific purpose. Furthermore, activity density indicates the level of activity within the area’s unit of measurement. To investigate activity density across 321 traffic analysis zones (TAZ) in Shiraz, mobile phone data was collected over a one-week period (from 2021-06-24 to 2021-06-30). Following the implementation of data cleaning and preprocessing techniques,  individuals’ stay point and home locations were identified. The population of each TAZ was estimated by utilising the location of individuals within their respective homes. The estimated population and the real population in each spatial unit were employed to calculate the expansion factor. The activity levels within one-hour time intervals on workdays, semi-workdays, and weekends were estimated using an appropriate expansion factor. To examine the spatial dependency of the variable of interest (density of activities), global and local Moran’s I indices were applied to the aggregated density of activities. The study employed exploratory analysis of urban activities time series to identify the trend of activity level, peak periods, intensity change by time, as well as other relevant temporal characteristics. Additionally, the Standardized Normal Homogeneity Test (SNHT) was employed to identify the change point of activity in time series, which indicates the commencement of the activities.
Results: The results not only demonstrated a significant positive spatial autocorrelation of the density of activities within traffic zones (P-Value < 0.001), but also identified the hotspots in the central parts of the study areas. It is notable that the central zones of the city exhibited high activity density, which was influenced by the spatial relationships within the study area. An exploratory analysis of time series revealed variations in activity patterns. These patterns exhibited higher activity levels on workdays compared to semi-workdays, and weekends. The time series observed in the latter half of the semi-workdays exhibited a striking resemblance to that of workdays, yet subsequently exhibited a trend between workdays and non-workdays as the activity level decreased. By examining the time series of activities, it can be observed that the mid-day peak period occurs at 12:00 to 14:00, while the evening peak period occurs at 20:00 to 22:00. Additionally, the lowest level of daily activity was identified between 3 and 6 a.m. The time series uniformity test was employed to ascertain the starting times of activities on workdays and semi-workdays, which were identified as 8:00 am, and on weekends, which were identified as 9:00 am. To validate the detected population and expansion factors and thus the estimated activity level, a spatial correlation between the estimated mobile phone population and the actual population within traffic analysis zones was calculated, which yielded an approximately 82% correlation coefficient. This correlation is statistically significant and therefore acceptable.
Conclusion: The results of these analyses could prove beneficial for the formulation of appropriate transportation planning and policy, as well as for the management of population density at hotspots at any time of the day. Furthermore, they could inform the analysis of urban transportation environmental impacts. With the availability of accurate mobile phone data for a range of spatial units, including traffic zones and even entire countries, it is possible to extract a diverse range of urban activity patterns, including those highlighted in this research.

کلیدواژه‌ها [English]

  • Urban Activity Pattern
  • Spatial Analysis
  • Temporal Analysis
  • Mobile Phone Data
Ahas, R., Aasa, A., Roose, A., Mark, Ü., & Silm, S. (2008). Evaluating passive mobile positioning data for tourism surveys: An Estonian case study. Tourism Management, 29(3), 469-486. https://doi.org/https://doi.org/10.1016/j.tourman.2007.05.014
Ahmed, K., Shahid, S., Ismail, T., Nawaz, N., & Wang, X. (2018). Absolute homogeneity assessment of precipitation time series in an arid region of Pakistan. Atmósfera, 31, 301-316. https://doi.org/10.20937/ATM.2018.31.03.06
Alexander, L., Jiang, S., Murga, M., & González, M. C. (2015). Origin–destination trips by purpose and time of day inferred from mobile phone data. Transportation Research Part C: Emerging Technologies, 58, 240-250. https://doi.org/https://doi.org/10.1016/j.trc.2015.02.018
Alexandersson, H. (1986). A homogeneity test applied to precipitation data. International Journal of Climatology, 6, 661-675. https://doi.org/10.1002/joc.3370060607
Anselin, L. (2010). Local Indicators of Spatial Association—ISA. Geographical Analysis, 27, 93-115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
Calabrese, F., Lorenzo, G., Liu, L., & Ratti, C. (2011). Estimating Origin-Destination Flows Using Mobile Phone Location Data. Pervasive Computing, IEEE, 10, 36-44. https://doi.org/10.1109/MPRV.2011.41
Chen, Y., Song, Y., & Li, C. (2020). Where do people tweet? The relationship of the built environment to tweeting in Chicago. Sustainable Cities and Society, 52, 101817. https://doi.org/https://doi.org/10.1016/j.scs.2019.101817
Dadashpoor, H., & Salarian, F. (2018). Spatial patterns analysis of urban growth in Iran metropolitan regions (Case study: Tehran, Mashhad, Isfahan, and Shiraz metropolitan regions). Town and Country Planning, 10(1), 117-138. https://doi.org/10.22059/jtcp.2018.251143.669841
Feng, D., Tu, L., & Sun, Z. (2019). Research on Population Spatiotemporal Aggregation Characteristics of a Small City: A Case Study on Shehong County Based on Baidu Heat Maps. Sustainability, 11(22). https://doi.org/10.3390/su11226276
Gao, Y., Cheng, J., Meng, H., & Liu, Y. (2019). Measuring spatio-temporal autocorrelation in time series data of collective human mobility. Geo-spatial Information Science, 22(3), 166-173. https://doi.org/10.1080/10095020.2019.1643609
García-Palomares, J., Gutiérrez, J., & Mínguez, C. (2015). Identification of tourist hot spots based on social networks: A comparative analysis of European metropolises using photo-sharing services and GIS. Applied Geography, 63, 408-417. https://doi.org/10.1016/j.apgeog.2015.08.002
Ghaed Rahmati, S., & Daneshmandi, N. (2018). Analysis of Urban Tourism Spatial Pattern (Case Study: Urban Tourism Space of Isfahan City) [Article]. Human Geography Research, 50(4 #b00873), 945-961. https://doi.org/20.1001.1.20086296.1397.50.4.10.9
Ghahramani, M., Zhou, M., & Hon, C. T. (2019). Mobile Phone Data Analysis: A Spatial Exploration Toward Hotspot Detection. IEEE Transactions on Automation Science and Engineering, 16(1), 351-362. https://doi.org/10.1109/TASE.2018.2795241
Ghodousi, M., Sadeghi-Niaraki, A., Rabiee, F., & Choi, S.-M. (2020). Spatial-Temporal Analysis of Point Distribution Pattern of Schools Using Spatial Autocorrelation Indices in Bojnourd City. Sustainability, 12, 7755. https://doi.org/10.3390/su12187755
Guo, H., Li, W., Yao, F., Wu, J., Zhou, X., Yue, Y., & Yeh, A. G. O. (2020). Who are more exposed to PM2.5 pollution: A mobile phone data approach. Environment International, 143, 105821. https://doi.org/https://doi.org/10.1016/j.envint.2020.105821
Hariharan, R., & Toyama, K. (2004). Project Lachesis: Parsing and Modeling Location Histories (Vol. 3234). https://doi.org/10.1007/978-3-540-30231-5_8
Hawkes, H. E., & Webb, J. (1962). Geochemistry in Mineral Exploration.
Iqbal, M. S., Choudhury, C. F., Wang, P., & González, M. C. (2014). Development of origin–destination matrices using mobile phone call data. Transportation Research Part C: Emerging Technologies, 40, 63-74. https://doi.org/https://doi.org/10.1016/j.trc.2014.01.002
Jiang, S., Ferreira, J., & Gonzalez, M. C. (2017). Activity-Based Human Mobility Patterns Inferred from Mobile Phone Data: A Case Study of Singapore. IEEE Transactions on Big Data, 3(2), 208-219. https://doi.org/10.1109/TBDATA.2016.2631141
Khan, A. (2018). The spatial distribution and relationship of tourist flow in Turkey. European Journal of Tourism Research, 19, 40-55. https://doi.org/10.54055/ejtr.v19i.324
Kubo, T., Uryu, S., Yamano, H., Tsuge, T., Yamakita, T., & Shirayama, Y. (2020). Mobile phone network data reveal nationwide economic value of coastal tourism under climate change. Tourism Management, 77, 104010. https://doi.org/https://doi.org/10.1016/j.tourman.2019.104010
Lee, K.-S., You, S. Y., Eom, J. K., Song, J., & Min, J. H. (2018). Urban spatiotemporal analysis using mobile phone data: Case study of medium- and large-sized Korean cities. Habitat International, 73, 6-15. https://doi.org/https://doi.org/10.1016/j.habitatint.2017.12.010
Li, J., Li, J., Yuan, Y., & Li, G. (2019). Spatiotemporal distribution characteristics and mechanism analysis of urban population density: A case of Xi'an, Shaanxi, China. Cities, 86, 62-70. https://doi.org/https://doi.org/10.1016/j.cities.2018.12.008
Louail, T., Lenormand, M., Garcia Cantu Ros, O., Picornell, M., Herranz, R., Frias-Martinez, E., Ramasco, J. J., & Barthelemy, M. (2014). From mobile phone data to the spatial structure of cities. Scientific reports, 4. https://doi.org/10.1038/srep05276
Marcolini, G., Bellin, A., & Chiogna, G. (2017). Performance of the Standard Normal Homogeneity Test for the homogenization of mean seasonal snow depth time series: PERFORMANCE OF SNHT FOR SNOW DEPTH TIME SERIES. International Journal of Climatology, 37. https://doi.org/10.1002/joc.4977
Mazzulla, G., & Forciniti, C. (2012). Spatial association techniques for analysing trip distribution in an urban area. European Transport Research Review, 4. https://doi.org/10.1007/s12544-012-0082-9
Milusheva, S. (2020). Managing the spread of disease with mobile phone data. Journal of Development Economics, 147, 102559. https://doi.org/https://doi.org/10.1016/j.jdeveco.2020.102559
Moya-Gómez, B., Stępniak, M., García-Palomares, J. C., Frías-Martínez, E., & Gutiérrez, J. (2021). Exploring night and day socio-spatial segregation based on mobile phone data: The case of Medellin (Colombia). Computers, Environment and Urban Systems, 89, 101675. https://doi.org/https://doi.org/10.1016/j.compenvurbsys.2021.101675
Municipality, S. (2016). Shiraz Statistical Yearbook (Deputy Office for Planning and Human Capital Development at Shiraz Municipality, Issue.
Parwez, M., Rawat, D. B., & Garuba, M. (2017). Big Data Analytics for User Activity Analysis and User Anomaly Detection in Mobile Wireless Network. IEEE Transactions on Industrial Informatics, PP, 1-1. https://doi.org/10.1109/TII.2017.2650206
Pirali, A., & Seyadat, S. (2014). Strategic Planning for the Shiraz City Traffic Management (Using SWOT model). Traffic Management Studies, 1393(32), 41-66. https://doi.org/magiran.com/p1336817
Rahman, M., & Neema, M. N. (2015). A GIS Based Integrated Approach to Measure the Spatial Equity of Community Facilities of Bangladesh. AIMS Geosciences, 1, 21-40. https://doi.org/10.3934/geosci.2015.1.21
Ratti, C., Pulselli, R., Williams, S., & Frenchman, D. (2006). Mobile Landscapes: Using Location Data from Cell Phones for Urban Analysis. Environment and Planning B: Planning and Design, 33, 727-748. https://doi.org/10.1068/b32047
Setavand, H., Hajizadeh, F., & Yaghfoori, H. (2019). Spatial analysis of Shiraz urban areas in terms of social justice with an emphasis on public services [Article]. Journal of Applied researches in Geographical Sciences, 19(52 #g00412), 171-192. https://doi.org/10.29252/jgs.19.52.171
Tettamanti, T., Demeter, H., & Varga, I. (2012). Route Choice Estimation Based on Cellular Signaling Data. Acta Polytechnica Hungarica, 9.
Tímea, K., Kovács-Székely, I., & Anda, A. (2020). Homogeneity tests and non-parametric analyses of tendencies in precipitation time series in Keszthely, Western Hungary. Theoretical and Applied Climatology, 139. https://doi.org/10.1007/s00704-019-03014-4
Tobler, W. R. (1970). A Computer Movie Simulating Urban Growth in the Detroit Region. Economic Geography, 46, 234-240. https://doi.org/10.2307/143141
Wang, J., Cai, J., Yue, X., & Suresh, N. C. (2021). Pre-positioning and real-time disaster response operations: Optimization with mobile phone location data. Transportation Research Part E: Logistics and Transportation Review, 150, 102344. https://doi.org/https://doi.org/10.1016/j.tre.2021.102344
Wang, M.-H., Schrock, S., Broek, N., & Mulinazzi, T. (2013). Estimating Dynamic Origin-Destination Data and Travel Demand Using Cell Phone Network Data. International Journal of Intelligent Transportation Systems Research, 11. https://doi.org/10.1007/s13177-013-0058-8
Xing, Z., Zhang, X., Zan, X., Xiao, C., Li, B., Han, K., Liu, Z., & Liu, J. (2021). Crowdsourced social media and mobile phone signaling data for disaster impact assessment: A case study of the 8.8 Jiuzhaigou earthquake. International Journal of Disaster Risk Reduction, 58, 102200. https://doi.org/https://doi.org/10.1016/j.ijdrr.2021.102200
Yang, X., Fang, Z., Xu, Y., Yin, L., Li, J., & Lu, S. (2019). Spatial heterogeneity in spatial interaction of human movements—Insights from large-scale mobile positioning data. Journal of Transport Geography, 78, 29-40. https://doi.org/https://doi.org/10.1016/j.jtrangeo.2019.05.010
Yu, X., Ivey, C., Huang, Z., Gurram, S., Sivaraman, V., Shen, H., Eluru, N., Hasan, S., Henneman, L., Shi, G., Zhang, H., Yu, H., & Zheng, J. (2020). Quantifying the impact of daily mobility on errors in air pollution exposure estimation using mobile phone location data. Environment International, 141, 105772. https://doi.org/https://doi.org/10.1016/j.envint.2020.105772
Zuo, X., & Zhang, Y. (2012). Detection and Analysis of Urban Area Hotspots Based on Cell Phone Traffic. J. Comput., 7, 1753-1760. https://doi.org/10.4304/jcp.7.7.1753-1760