بررسی بهبود دقت طبقه‌بندی با استفاده از ادغام تصویر تک‌باند ALI با تصاویر ابرطیفی Hyperion

نوع مقاله : علمی - پژوهشی

نویسندگان

1 کارشناس ارشد سنجش از دور و سیستم اطلاعات جغرافیایی، گروه سنجش از دور و GIS، دانشگاه تربیت مدرس

2 استاد، دانشکده برق و کامپیوتر، دانشگاه تربیت مدرس

3 دانشجوی کارشناسی ارشد سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکدۀ جغرافیا، دانشگاه تهران

4 کارشناس ارشد سنجش از دور و سیستم اطلاعات جغرافیایی، سازمان نقشه‌برداری ایران

چکیده

بیشتر الگوریتم‌های طبقه‌بندی داده‌های سنجش از دور براساس ویژگی‌ها و اطلاعات طیفی پیکسل‌ها عمل می­کنند. این مسئله باعث نادیده گرفتن اطلاعات مکانی سودمند و قابل استخراج بسیاری، مانند بافت تصاویر می­شود. محیط شهری بافت ناهمگنی دارد که شناسایی انواع کاربری‌ها را به فرایندی دشوار و پیچیده تبدیل کرده ‌است. در این پژوهش تأثیر استفاده از بافت تصویر تک­باند سنجندۀ ALI (Advanced Land Imager) بر دقت طبقه‌بندی تصاویر ابرطیفی سنجندۀ هایپریون«Hyperion» در محیط‌های شهری بررسی شد. طبقه‌بندی با استفاده از روش جنگل‌های تصادفی[1] و در پنج سناریوی مختلف انجام شد: سناریوی شمارۀ 1: طبقه‌بندی اطلاعات طیفی تصویر ادغام‌شده به روش  [1]CNT(بدون لحاظ کردن اطلاعات بافت)؛ سناریوهای 2، 3، 4 و 5: طبقه‌بندی تصویر CNT با افزوده شدن بردارهای ویژگی بافت حاصل از روش ماتریس هم‌وقوعی در اندازه‌های پنجرۀ 3، 5، 7 و  9 هستند. براساس یافته‌های این تحقیق، افزودن بافت به طیف تصویر ادغامی به روش CNT دقت طبقه‌بندی را بهبود چشمگیری داد، به گونه‌ای که دقت کلی بر اثر افزودن بافت با حدود ده درصد افزایش، از 80.47% به 90.74% رسید. بسیاری از پوشش‌های کاربری مانند جاده، بافت مسکونی، صنایع کوچک و پراکنده و صنایع متمرکز نیز در زمینۀ دقت تولیدکننده و مصرف­کننده رشد چشمگیری را شاهد بودند. پارامتر خطای OOB[1] با 11% کاهش، از 19.86 به 8.87% رسید. بردارهای ویژگی مانند میانگین و کنتراست نیز، توانستند از لحاظ میزان اهمیت در رتبه‌های بالا قرار گیرند. همچنین، افزایش اندازۀ پنجره منجر به بهبود بیشتر دقت طبقه‌بندی شد، به گونه‌ای که اندازۀ پنجرۀ 9 بهترین عملکرد را در پی‌ داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis of the Classification's Accuracy Improvement by Fusion of ALI Panchromatic Image and Hyperion Hyperspectral Imagery

نویسندگان [English]

  • Ahmad Malek Nejad Yazdi 1
  • Hassan Ghassemian 2
  • Vahid Esavi 1
1 RS and GIS MSc Graduate, RS and GIS Department, Tarbiat Modares University
2 Professor, Power and Computer Department, Tarbiat Modares University
3
4
چکیده [English]

Most of common classification algorithms in remote sensing are based on spectral characteristics of the pixels. These approaches result in ignorance of many precious information, such as texture, in the classification process. The urban environment has an inhomogeneous texture, which makes land covers detection a complicated process. In this study, use of texture extracted from the panchromatic image of ALI detector for improvement of Hyperion image's classification accuracy in urban regions was analyzed. Classification carried out using Random Forests method and in five different scenarios. These scenarios included: 1- Classification of the fused image by CNT method (Without Incluion of Texture Information), The other four scenarios covered the classification used by simultaneous use of texture extracted by Gray Level Co-occurrence Matrix »GLCM« in 4 different window sizes: 3,5,7,9 and fused image. Results of these analyses revealed that use of texture information as a useful parameter can lead to an enormous improvement in classification accuracy. Our findings showed that use of texture resulted in an increase in overall accuracy by around 10 percent from 80.47 to 90.74 percent . Many of land use/land covers such as roads, residential and industrial areas also experienced the improvement in producer and user accuracies. OOB error as an essential random forests parameter inclined as far as 11 percent from 19.86 to 8.87 percent. Moreover, the GLCM feature vectors such as mean and contrast achieved high ranks in importance evaluation in random forests classification. Increase of window size also led to a rise of classification accuracy and the window size 9 gained the highest accuracy accordingly.

کلیدواژه‌ها [English]

  • remote sensing
  • Hyperspectral Imagery
  • Image Fusion
  • Random Forests
  • Texture
  1. Breiman, L., 1996, Bagging Predictors, Machine learning, 24(2): 123-140.
  2. Breiman, L., 2001, Random Forests, Machine learning, 45(1): 5-32.
  3. Chutia, D., Bhattacharyya, D.K., Kalita, R., Goswami, J., Singh, P.S. & Sudhakar, S., 2014, A Model on Achieving Higher Performance in the Classification of Hyperspectral Satellite Data: A Case Study on Hyperion Data, Applied Geomatics, 6(3): 181-195.
  4. Dobhal, S., 2008, Performance Analysis of High-Resolution and Hyperspectral Data Fusion for Classification and Linear Feature Extraction, Msc Thesis, ITC, Enscede.
  5. Fawagreh, K., Gaber, M.M. & Elyan, E., 2014, Random Forests: From Early Developments to Recent Advancements, Systems Science & Control Engineering: An Open Access Journal,2:1-21.
  6. Ghimire, B., Rogan, J. & Miller, J., 2010, Contextual Land-Cover Classification: Incorporating Spatial Dependence in Land-Cover Classification Models Using Random Forests and the Getis Statistic, Remote Sensing Letters, 1(1): 45-54.
  7. Gualtieri, J.A., 2009, The Support Vector Machine (SVM) Algorithm for Supervised Classification of Hyperspectral Remote Sensing Data, In: Kernel Methods for Remote Sensing Data Analysis, Edited by Camps-Valls, G., & Bruzzone, L., Wiley, New York, pp. 51-83.
  8. Hall-Beyer, M., 2007, GLCM Texture: A Tutorial, Version 2010, Available in: http://www.fp.ucalgary.ca/mhallbey/tutorial.htm.
  9. Haralick, R.M., Shanmugam, K., Dinstein, I.H., 1973, Textural Features for Image Classification, IEEE Transactions on Systems, Man and Cybernetics, 6: 610-621.
  10. Haralick, R.M., 1979, Statistical and Structural Approaches to Texture, Proceedings of the IEEE, 67(5): 786-804.
  11. Hsu, P.H., 2007, Feature Extraction of Hyperspectral Images Using Wavelet and Matching Pursuit, ISPRS Journal of Photogrammetry and Remote Sensing, 62(2): 78-92.
  12. Kasetkasem, T., Arora, M. K. & Varshney, P.K., 2005, Super Resolution Land Cover Mapping Using a Markov Random Field Based Approach, Remote Sensing of Environment, 96: 302-314.
  13. Kuhn, S., Egert, B., Neumann, S. & Steinbeck, C., 2008, Building blocks for Automated Elucidation of Metabolites: Machine Learning Methods for NMR Prediction, BMC Bioinformatics, 9(1): 400-412.‏
  14. Liaw, A, & Wiener, M., 2002, Classification and Regression by Random Forest, R news, 2(3).
  15. Licciardi, G.A., Khan, M.M. & Chanussot, J., 2012, Fusion of Hyperspectral and Panchromatic Images: A Hybrid Use of Indusion and Nonlinear PCA, 19th IEEE International Conference on Image Processing (ICIP): 2133-2136.
  16. Lu, D. & Weng, Q., 2007, A Survey of Image Classification Methods and Techniques for Improving Classification Performance, International journal of Remote sensing, 28(5): 823-870.
  17. Murray, H., Lucieer, A. & Williams, R., 2010, Texture-Based Classification of Sub-Antarctic Vegetation Communities on Heard Island, International Journal of Applied Earth Observation and Geoinformation, 12: 138-149.
  18. Pacifici, F., Chini, M. & Emery, W. J., 2009, A Neural Network Approach Using Multi-Scale Textural Metrics from Very High-Resolution Panchromatic Imagery for Urban Land-Use Classification, Remote Sensing of Environment, 113(6): 129-1276.
  19. Pande, H., Tiwari, P.S. & Dobhal, S., 2009, Analyzing Hyper-Spectral and Multi-Spectral Data Fusion in
  20. Spectral Domain, Journal of the Indian Society of Remote Sensing, 37:395-408.
  21. Pour, A.B. & Hashim, M., 2013, Fusing ASTER, ALI and Hyperion Data for Enhanced Mineral Mapping, International Journal of Image and Data Fusion, 4:1-20.
  22. Qiu, F., 2008, Neuro-Fuzzy Based Analysis of Hyperspectral Imagery, Photogrammetric Engineering & Remote Sensing, 74(10): 1235-1247.
  23. Richards, J.A., 2013, Remote Sensing Digital Image Analysis: An Introduction, Springer, Verlag Berlin Heidelberg, pp. 413-421.
  24. Rodriguez-Galiano, V.F., Ghimire, B., Rogan, J., Chica-Olmo, M. & Rigol-Sanchez, J.P., 2012, An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification, ISPRS Journal of Photogrammetry and Remote Sensing, 67:93-104.
  25. Welikanna, D.R., Tolpekin, V. & Kant ,Yogesh, 2008, Analysis of the Effectiveness of Spectral Mixture Analysis and Markov Random Field Based Super Resolution Mapping Over an Urban Environment, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, 38: 641-649.
  26. Zhang, H., Zhang, Y. & Lin, H., 2012, Urban Land Cover Mapping Using Random Forest Combined with Optical and SAR Data, IEEE International In Geoscience and Remote Sensing Symposium (IGARSS): 6809- 6812.