بررسی شاخص‌های طیفی به‌منظور شناسایی بیماری‌های زنگ زرد و قهوه‌ای در مدل تاج‌پوشش

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار مرکز مطالعات سنجش از دور و GIS، دانشکدة علوم زمین، دانشگاه شهید بهشتی

2 استاد مرکز مطالعات سنجش از دور و GIS، دانشکدة علوم زمین، دانشگاه شهید بهشتی

3 دانشجوی کارشناسی ارشد سنجش از دور و GIS، مرکز مطالعات سنجش از دور و GIS، دانشگاه شهید بهشتی

چکیده

بیماری‌های زنگ زرد و قهوه‌ای گندم ازجمله مهم‌ترین بیماری‌های غلات در ایران و سایر کشورهای دنیا محسوب می‌شوند که سالیانه خسارات جبران‌ناپذیری را به اقتصاد کشاورزی وارد می‌کنند و در اغلب موارد، هم‌زمان رخ می‌دهند. بنابراین در این تحقیق، اثر بیماری‌های زنگ زرد و قهوه‌ای گندم در بازتابندگی برگ، با استفاده از شاخص‌های طیفی در مدل تاج‌پوشش، بررسی شد. بدین‌منظور، شاخص‌های گوناگون پوشش گیاهی استخراج‌شده از طیف برگ بیمار ارزیابی شدند. برای این کار، میزان گسترش بیماری‌های زنگ زرد و قهوه‌ای سطح برگ و درجات متفاوت آنها، با استفاده از دوربین دیجیتال و الگوریتم چندمرحله‌ای شامل تبدیلات رنگ، تهیة ماسک، استفاده از بافت و طبقه‌بندی حداکثر احتمال، استخراج شد. همچنین نتایج نشان داد، با افزایش نسبت سطح بیمار برگ، مقادیر عددی شاخص‌ها تغییر می‌کند؛ درحالی‌که پراکندگی داده‌ها به‌صورت کاملاً مشخصی افزایش می‌یابد. بیشترین میزان همبستگی برای شاخص NDVI برابر با 9/0و حداقل در شاخص حداکثر شیب قرمز برابر با 2/0 است. با ارائة معیار همانندی، دامنة تغییرات و نیز پراکندگی درون‌کلاسی، روابط طیف و بیماری بررسی و مشخص شد که با گسترش بیماری، معیارهای مورد اشاره تغییر می‌یابند. اگرچه در بیماری زنگ زرد این تغییرات دیده نمی‌شود، در شاخص‌های گوناگون طیفی با افزایش میزان بیماری، اختلاط طیفی در بخش‌های متفاوت زرد، نارنجی، قهوه‌ای و مردة گیاه دلیلی بر پراکندگی داده‌ها با گسترش بیماری محسوب می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Vegetation Indices to Recognizing Wheat Leaf and Yellow Rust at Canopy Scale

نویسندگان [English]

  • D Ashourloo 1
  • H Aghighi 2
  • A.A Matkan 2
  • H Nematollahi 3
1 Assistant Prof. of R.S. & GIS Research Center, Shahid Beheshti University
2 Assistant Prof. of R.S. & GIS Research Center, Shahid Beheshti University
3 M.Sc. Student of R.S. & GIS, Remote Sensing & GIS Research Center, Shahid Beheshti University
چکیده [English]

Wheat rust is one of the important diseases of cereal crops in Iran and other countries in the world which imposes irreparable damages to the agricultural economy. In this study, the effects of the leaf and yellow rust disease on wheat leaves reflectance were studied. For this purpose, various vegetation indices derived from leaf spectra were measured. To do this, diseases ratio and varying degrees of disease were extracted by using digital camera and multi-step algorithm including color Transformation, mask preparation, texture and maximum likelihood classification. Results show variation in the values of the parameters with changing in proportion of disease whereas the data scattering of indexes Increase quickly. The highest correlation was for the NDVI (0.9) and the minimum was for the red slope (0.2). With the similarity criteria, range and inter-class scattering relations of spectra and disease were studied and with Increasing of the disease ratio. These criteria are altered by developing of disease ratio .Further investigation showed, spectrum mixing in different fraction of yellow, orange, brown and dead is a cause for data scattering with disease development.

کلیدواژه‌ها [English]

  • Precision farming
  • Spectral data
  • Canopy scale
  • Narrow band vegetation indexes
  • Wheat leaf and yellow rust
  1. جعفرپور، بهروز؛ بیک‌زاده، ناصر؛ 1389. مدیریت بیماریها و آفات گندم“، انتشارات جهاد دانشگاهی مشهد.
  2. Ashourloo, D., Mobasheri, M.R. & Huete, A., 2014a, Evaluating the Effect of Different Wheat Rust Disease Symptoms on Vegetation Indices Using Hyperspectral Measurements, Remote Sensing, 6, PP. 5107-5123.
  3. Ashourloo, D., Mobasheri, M.R. & Huete, A., 2014b, Developing Two Spectral Disease Indices for Detection of Wheat Leaf Rust (Pucciniatriticina), Remote Sensing, 6, PP. 4723-4740.
  4. Ashourloo, D., Aghighi, H., Matkan, A.A., Mobasheri, M.R. & Rad, A.M., 2016a, An Investigation into Machine Learning Regression Techniques for the Leaf Rust Disease Detection Using Hyperspectral Measurement, IEEE J. Sel. Top. Appl. Earth Observ., Remote Sensing, 9, PP. 4344-4351.
  5. Ashourloo, D., Matkan, A.A., Huete, A., Aghighi, H. & Mobasheri, M.R., 2016b, Developing an Index for Detection and Identification of Disease Stages, IEEE Geoscience and Remote Sensing Letters, 13(6), PP. 851-855.
  6. Adams, M.L., Philpot, W.D. & Norvell, W.A., 1999, Yellowness Index: An Application of Spectral Second Derivatives to Estimate Chlorosis of Leaves in Stressed Vegetation, International Journal of Remote Sensing, 20, PP. 3663-3675.
  7. Broge, N.H. & Leblanc, E., 2001, Comparing Prediction Power and Stability of Broadband and Hyperspectral Vegetation Indices for Estimation of Green Leaf Area Index and Canopy Chlorophyll Density, Remote Sensing of Environment, 76, PP. 156-172.
  8. Cheng, Z., Rui-liang, P., Ji-hua, W. & Wen-jiang., 2012, Detecting Powdery Mildew of Winter Wheat Using Leaf Level Hyperspectral Measurements, Computers and Electronics in Agriculture, 85, PP. 13-23.
  9. Devadas, R., Lamb, D.W., Simpfendorfer, S. & Backhouse, D., 2009, Evaluating Ten Spectral Vegetation Indices for Identifying Rust Infection in Individual Wheat Leaves, Precision Agriculture, 10, PP. 459-470.
  10. Filella, I.; Serrano, L.; Serra, J.; Penuelas, J. 1995 “Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis,” Crop Sci., vol.35, pp.1400-1405.
  11. Galvão, L.S., Formaggio, A.R. & Tisot, D.A., 2005, Discrimination of Sugarcane Varieties in Southeastern Brazil with EO-1 Hyperion Data, Remote Sensing of Environment, 94, PP. 523-534.
  12. Gail Ruhl., 2012, http://www.btny.purdue.edu/ Extension/Pathology/CropDiseases/Wheat/Wheat1.html.
  13. Gamon, J.A.; Penuelas, J.; Field, C.B. 1992 “A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency,” Remote Sens. Environ.,vol. 41, pp.35-44.
  14. Gong, P., Pu, R. & Heald, R.C., 2002, Analysis of in Situ Hyperspectral Data for Nutrient Estimation of Giant Sequoia, International Journal of Remote Sensing, 23, PP. 1827-1850.
  15. Haboudane, D., Miller, J.R., Pattery, E., Zarco-Tejad, P.J. & Strachan, I.B., 2004, Hyperspectral Vegetation Indices and Novel Algorithms for Predicting Green LAI of Crop Canopies: Modeling and Validation in the Context of Precision Agriculture, Remote Sensing Environment, 90, PP. 337-352.
  16. Hansen, J.G., 1991, Use of Multispectral Radiometry in Wheat Yellow Rust Experiments, OEPP/EPPO Bulletin, 21, PP. 651-658.
  17. Haralick, R.M. & Shanmugam, K., 1973, Computer Classification of Reservoir Sandstones, IEEE Trans. on Geo. Eng, 11, PP. 171-177.
  18. Hiary, A.S., Bani-Ahmad, M., Reyalat, M.B. & ALRahamneh, Z., 2011, Fast and Accurate Detection and Classification of Plant Diseases, International Journal of Computer Applications, 17, PP. 31-38.
  19. Jonas Franke, Gunter Menz, Erich-Christian Oerke., 2005 “Comparison of multi- and hyperspectral imaging data of leaf rust infected wheat plants,” SPIE vol.5976-59761D.
  20. Kuniaki, U., Takabayashi, Y. & Kosugi, Y., 2008, Hyperspectral Analysis of Japanese Oak Wilt to Determine Normalized Wilt Index, In Proceedings of 2008 IEEE International Geoscience & Remote Sensing Symposium, Boston, MA, USA, 6-11 July 2008, 2, PP. 295-298.
  21. Laudien, R., Bareth, G. & Doluschitz, R., 2003, Analysis of Hyperspectral Field Data for Detection of Sugar Beet Diseases, Proc. EFITA Conf. 2003. Debrecen, Hungary, PP. 375-381.
  22. Li, G. B., Zeng, S. M., & Li, Z. Q. 1989. Integrated Management of Wheat Pests (pp. 185– 186). Beijing: Press of Agriculture Science and Technology of China.
  23. Michael, P., Grisham, R., Johnson, M.V. & Zimba, P., 2010, Detecting Sugarcane Yellow Leaf Virus Infection In Asymptomatic Leaves With Hyperspectral Remote Sensing And Associated Leaf, Journal of Virological Methods, 167, PP. 140-145.
  24. Moshou, D., Bravo, C., West, J.S, McCartney, W.S. & Ramon, H.A., 2007, Automatic Detection of Yellow Rust' in Wheat Using Reflectance Measurements and Neural Networks, Computers and Electronics in Agriculture, 44, PP. 173-188.
  25. Peñuelas, J.; Pinol, J.; Ogaya, R.; Filella, I. 1997 “Estimation of plant water concen-tration by the reflectance water index WI (R900/R970) ,” Int. J. Remote Sens., vol. 18, pp.2869-2875
  26. Rinehart, G.L., Cathoun, J.H. & Schabbenberger, O., 2002, Remote Sensing of Stripe Patch and Dollar Spot on Creeping Bentgrass and Annual Bluegrass Turf Using Visible and Near-infrared Spectroscopy, Australian Turfgrass Management, Vol. 4.2.
  27. Rumpf, T., Mahlein, A.K., Steiner, U., Oerke, E.C., Dehne, H.W. & Plümer, L., 2010, Early Detection and Classification of Plant Diseases with Support Vector Machines Based on Hyperspectral Reflectance, Computers and Electronics in Agriculture, 74, PP. 91-99.
  28. Rouse, J.W., Haas, R.H., Schell, J.A. & Deering, D.W., 1973, Monitoring Vegetation Systems in the Great Plains with ERTS, Proc. Third ERTS Symposium, 1, PP. 48-62.
  29. Sasaki, Y., Okamoto, T., Imou, K. & Torii, T., 1999, Generating of Distinction Parameter for Automatic Diagnosis of Plant Disease by GP, Journal of the Japanese Society of Agricultural Machinery, 61, PP. 73-80.
  30. Wenjiang, H., Lamb, D.W., Zheng, N., Yongjiang, Z., Liangyun, L. & Jihua, W., 2007, Identification of Yellow Rust in Wheat Using in-Situ Spectral Reflectance Measurements and Airborne Hyperspectral Imaging, Precision Agriculture, 8, PP. 187-197.
  31. Yang, Z., Rao, M. N., Elliott, N. C., Kindler, S. D., & Popham, T. W. 2009. Differentiating stress induced by greenbugs and Russian wheat aphids in wheat using remote sensing. Computers and Electronics in Agriculture, 67, 64–70.
  32. Zhang, J.; Pu, R.; Huang, W.; Yuan, L.; Luo, J.; Wang, J. 2012 “Using in-situ hyperspectral data for detecting and discriminating yellow rust disease from nutrient stresses,” Field Crops Res.,vol.134, pp. 165–174.