پیش‌بینی فرسایش خندقی با استفاده از سنجندة راداری Alos و مدل Maxent در حوضة الوند

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی ساری

2 استاد گروه مهندسی آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی ساری

3 استادیار دانشگاه اصفهان

چکیده

شواهد نشان می‌دهد که سنجش از دور ارزش خود را به‌‌منزلة ابزاری قدرتمند در سراسر جهان تثبیت کرده است. سنجش از دور می‌تواند هزینه‌ها را کاهش دهد و زمان اجرای طرح‌ها را کوتاه کند؛ به‌ویژه با داشتن دیدی جامع از مناطق  بزرگ که دسترسی به آنها دشوار است. هدف از پژوهش حاضر پیش‌بینی فرسایش خندقی، با استفاده از داده‌های سنجش از دور و مدل مکسنت (Maxent) در حوضة الوند، در بخش غربی استان کرمانشاه است. حوضة الوند، به‌دلیل وسعت و آلوده‌بودن به مین و هم‌مرزبودن با کشورعراق، با مشکل دسترسی مواجه است. از سوی دیگر، قالب‌بودن اراضی مارنی و نبود پوشش گیاهی مناسب باعث چیرگی فرسایش خندقی در منطقه شده است. بر همین اساس، در پژوهش حاضر، با کار ترکیبی حاصل از بازدید میدانی و سنجش از دور که در محیط گوگل ارث انجام گرفت، لایة‌ تحلیل مکانی مورد نیاز مدل مکسنت تهیه و پهنة مناطق خندقی رقومی‌سازی شد و به‌صورت‌ متغیرهای مستقل، به مدل معرفی شد. همچنین، برای تجزیه و تحلیل سطح زمین، مدل رقومی ارتفاعی رادار سنجندة الوس به‌کار رفت و پانزده لایة محیطی با دقت تفکیک دَه متر به‌منزلة‌ متغیرهای وابسته تهیه شدند. با استفاده از این مدل کمی و آماری، سه هدف ذیل تحقق یافت: 1. میزان تأثیر هر لایة محیطی با استفاده از آزمون Jackknife به‌دست آمد؛ 2. روند بیشترین و کمترین تأثیر هر پارامتر، با استفاده از رگرسیون لجستیک، بررسی شد؛ 3. نقشة پتانسیل فرسایش خندقی برای کل منطقه تهیه شد. سپس اعتبار‌سنجی مدل، با استفاده از منحنی ROC و محاسبة مساحت زیرمنحنی(AUC) ، صورت گرفت. نتایج به‌دست‌آمده نشان داد مؤثرترین شاخص در ایجاد فرسایش خندقی مربوط به شاخص ارتفاع، فاصلة عمودی از سطح کانال و تجمع جریان است و اعتبارسنجی برابر  با AUC=0.899  است که سطح خوب نتایج را نشان می‌دهد. 

کلیدواژه‌ها


عنوان مقاله [English]

Prediction of Gully Erosion Using RADAR Sensor of Alos and Maximum Entropy Model in Alvand Basin

نویسندگان [English]

  • S Pirouzinejad 1
  • Solaimani, K Solaimani 2
  • M Habibnejad Roshan 2
  • R Zakerinejad 3
1 . M.Sc. Student of Watershed Eng. Dep., Sari Agricultural Sciences and Natural Res. University
2 Prof. of Watershed Eng. Dep., Sari Agricultural Sciences and Natural Res. University
3 Assistant Professor of Isfahan University
چکیده [English]

The evidences showing that remote sensing has a significant role as a powerful tool around the world, which can reduced the costs and time of projects, especially since they have a comprehensive view of the large areas where are difficult to access. This study has aimed to predict gully erosion using remote sensing data and Maxent model in Alvand basin located in the western part of Kermanshah province, Iran. Alvand basin with a difficulty accessing due to the extent of the minefield during the imposed war and interconnected with Iraq, on the other hand, the shape of Marne lands and absence of proper vegetation have led to acceleration of gully erosion. Therefore, in this study with a combination method of fieldwork and remote sensing which used in the Google Earth environment, then the essential spatial analysis layout has prepared by Maxent model and the zonation of the gully area has digitized as independent variables that introduced to model. In addition, for analysing the ground surface, a digital elevation model of the Alos data has used with 15 environmental layers of 10/m resolution were prepared as dependent variables. Three goals have attained based on this quantitative and statistical model. First, the effect level of each environmental layer has obtained using the Jackknife test. Second, trend of maximum and minimum effects of each parameter has investigated using logistic regression and finally, Potential map of gully erosion was prepared for the whole region. Then the model validation has performed using the ROC curve and the area under the curve (AUC). It has concluded that the most effective index in gully erosion creation related to elevation index, vertical distance from channel level and flow accumulation. The validation is calculated equal to AUC = 0.899, which shows a good level of results.

کلیدواژه‌ها [English]

  • Gully erosion
  • remote sensing
  • Maximum entropy model and Kermanshah
  • Iran
  1. Ahmadi, H., 1999, Applied Geomorphology (Water Erosion), Volume I, Tehran University Press.
  2. Ahmadi, h., Mohammadi, A., Ghodousi, J., & Salajegheh, A., 2007, Testing the four models for prediction of gully head advancement (case study: Hableh Rood basin - Iran), Biaban, 12, pp 61-68.
  3. Angileri, S. E., Conoscenti, C., Hochschild, V., Märker, M., Rotigliano, E., & Agnesi, V., 2016, Water erosion susceptibility mapping by applying Stochastic Gradient Treeboost to the Imera Meridionale River Basin (Sicily, Italy), Geomorphology, 262, pp. 61-76.
  4. Angileri, E.S., 2012, water erosion prediction by stochastic and empirical models in the Mediterranean: a case study in northern Sicily (Italy).PH.D thesis, department of geography Eberhard Karl's university Tubingen, Germany.
  5. Arekhy, S., and Niyazi, E., 2010, Application of GIS and RS to estimate soil erosion and sediment (model RUSLE), Magazine researches soil and water conservation, Volume 17, Issue 2, pp. 27-1.
  6. Bayramün, I., Dengüz, O., Bapkan, O., & Parlak, M., 2003, Soil Erosion Risk Assessment With ICONA Model; Case Study: Beypazary area, Turkish Journal of Agriculture and Forestry, 27, pp. 105-116.
  7. Capra, A., & Scicolone, B., 2002, Ephemeral gully erosion in a wheat- cultivated area in Sicily (Italy), Biosystems Engineering, 83 (1), pp 119- 126.
  8. Ehiorobo, J.O., & Audu, H.A.P., 2012, Monitoring of Gully Erosion in an Urban Area Using Geoinformation Technology, Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS), 3 (2), pp. 270-275.
  9. Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., LI J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz C., Nakamura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., Phillips, S.J., Richardson, K., Scachettipereira, R., Schapire, R.E., SOBERON, J., Williams, S., Wisz, M.S., & Zimmermann, N.E., 2006, Novel methods improve prediction of species’ distributions from occurrence data, Ecography, 29,pp. 129-151.
  10. Entezari, M., maleki, A., Moradi, S., 2015, Erosion gully catchment area of Deira using a weighted combination of index and stream power, Geographical Research Quarterly, Vol. 30, No. 3, serial number 118, pp. 297-312.
  11. Feiznya, S., heshmati, M., Ahmadi, H., and Ghodousi, J., 2007, brrsy marl Aghajari gully erosion in the area of Qasre Shirin, Journal of Natural Resources, Issue 74, Pp. 32-40.
  12. Fielding, A.H., & Bell, J.F., 1997, A review of methods for the assessment of prediction errors in conservation presence/ absence models, Environmental Conservation, 24, pp. 38-49.
  13. Flugel, W., Marker, M., Moretti, S., Rodolfi, G., & Sidorchuk, A., 2003, Integrating geographical information systems, remote sensing, ground trothing and modeling approaches for regional erosion classification of semi-arid catchments in South Africa. Hydrological Processes, 17 (5), pp.929-942.
  14. Gomez, B., Banbury, K., Marden, M., Trustrum, N.A., Peacock, D.H., & Hoskin, P.J., 2003, Gully erosion and sediment production, The War Area Stream, New Zealand, Water Resources Research, 39 (7), pp.1187.
  15. Hadley, R.F., Lal, R., Onstad, C.A., Walling, D.E., Yair, A., 1985, Recent Developments in Erosion and Sedement Yield Studies, Technical Documents in Hydrology, UNESCO, Paris.
  16. Heidary, f., & sabohy, r., 2015, Investigating the Factors Affecting the Growth of Gulls and Determining Their Propagation Model in Kerman Province (Case Study of Baft, Rabor and Rhine Area), Engineering Sciences of Iran, 9 (29), pp.1-10.
  17. Hengl, T., Gruber S., & Shrestha, D.P., 2003, Digital terrain analysisin ILWIS: lecture notes and user guide. Enschede. Netherlands: International Institute for Geo information. Science and Earth Observation (ITC).
  18. Hengl, T., & Reuter, I.H., 2009, Geomorphometry. Concepts, Software, Applications, Developments. In: Soil Science, 33, Amsterdam, Oxford, (a cura di).
  19. Hosmer, D.W., & Lemeshow, S., 2000, Applied Logistic Regression, 2nd ed. Wiley, NewYork,
  20. Howard, A.M., Bernardes, S., Nibbelink, N., Biondid, L., Presotto, A., Fragaszy, D.M., & Madden, M., 2012, A maximum entropy model of the bearded capuchin monkey habitat incorporating topography and spectral unmixing analysis, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, I-2. XXII ISPRS Congress, Melbourne, Australia.
  21. Ionita, I., Fullen, M.A., Zgłobicki, W., Poesen, J., 2015, Gully erosion as a natural and human-induced hazard, Nat. Hazards, 79, pp. 1–5.
  22. Kheir, R., Wilson, J., & Deng, Y., 2007, Use of terrain variables for map- ping gully erosion susceptibility in Lebanon, Earth Surface Processes and Landforms, 32, pp.1770-1782.
  23. KOCO, S., 2006, Modeling the inception of gully erosion around town of Bardejov using geographic information systems, Katedra geografie a regionalneho rozvoja, M.sc thesis, Slovenia.
  24. Kumar, S. & Stohlgren, T., 2009, Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyricamonticola in New Caledonia, Journal of Ecology and Natural Environment, 1 (4), pp. 094-098.
  25. Lal, R., 2001, Soil degradation by erosion, Land Degrad, Dev, 12 (6), pp. 519–539.
  26. Maerker, M., Queneherve, G., Bachofer, F., & Mori, S, 2015, A simple DEM assessment procedure for gully system analysis in the Lake Manyara area, northern Tanzania, Natural Hazards, 79(1), pp. 235-253.‏
  27. Marker, M., 2001, Assessment of gully erosion process dynamics for water resources management in a semiarid catchment of Swaziland (Southern Africa), Erosion Prediction in Ungauged Basins: Integra- ting Methods and Techniques (Proceedings of symposium HS01 held during IUGG2003 al Sapporo, July 2003), AHS Publ. no. 279.
  28. Marker, M., Pelacani, S., & Schroder, B., 2012, A functional entity approach to predict soil erosion processes in a small Plio-Pleistocene Mediterranean catchment in Northern Chianti, Italy, Geomorphology, 125 (4), pp.530-540.
  29. Martınez-Casasnovas, J. A., 2003, A spatial information technology approach for the mapping and quantification of gully erosion, Catena, 50(2), pp. 293-308.
  30. Mcinnes, J., Vigiak, O., & Roberts, A.M., 2011, Using Google Earth to map gully extent in the West Gippsland region (Victoria, Australia), 19th International Congress on Modeling and Simulation, Perth, Australia, 12-16 December.
  31. Montgomery, D.R., & Dietrich, W.E., 1994, A physically based model for the topographic control on shallow land sliding, Water Resources Research, 30, pp. 1153-1171.
  32. Morgan, R.P.C., Mongomezulu, 2003, Threshold conditions for initiation of valley side gullies in Middleveld of Swaziland, Catena, volume50, Issues 2-4, pp. 401-414.
  33. Nazari Samani A., Ahmadi, H., Jafari, M., & Boggs, G., 2009, Geomorphic threshold conditions for gully erosion in Southwestern Iran (Boushehr-Samal watershed).
  34. Nazari Samani, A., Ahmadi, H., Mohammadi, A., Ghoddousi, J., Salajegheh, A., Boggs, B., & Pishyar, R, 2010, Factors Controlling Gully Advancement and Models Evaluation (Hableh Rood Basin, Iran) Water Resource Management, 24, pp.1531-1549.
  35. Pishyar, R., 2010, Factors Controlling Gully Advancement and Models Evaluation (Hableh Rood Basin, Iran), Water Resource Management, 24, pp. 1531-1549.
  36. Poesen, J., Nachtergaele, J., Verstracten, G. and Volentin, C., 2003, Gully erosion and environmental change: Importance and research needs, Catena, 50, 91, pp. 133.160.
  37. Pallaris, K., 2000, Terrain modelling for erosion risk assessment in the Cabuyal river catchment: comparison of results with farmer perceptions, Advances in Environmental Monitoring and Modelling, 1 (1), pp. 149-177.
  38. Phillips, S.J., Anderson, R.P., & Schapire, R.E., 2006, Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190,pp. 231-259.
  39. Phillips, S.J., Dudik, M., & Schapire, R.E., 2004, A maximum entropy approach to species distribution modeling, Proceedings of the 21st International Conference on Machine Learning. ACM Press, New York, pp. 655-662.
  40. Poesen, J.W., 1996, Contribution of gully erosion to sediment production on cultivated lands and rangelands, Yield, Global and Regional Perspectives (Proceedings of the Exeter Symposium July 1996), Iahs Publ., 236.
  41. Potere, D., 2008, Horizontal positional accuracy of Google earth’s high resolution imagery archive, Sensors, 8, 7973-7981.
  42. Qin, C-Z., Zhu, A-X., Pei, T., Li, B-L., Scholten, T., Behrens, T. and Zhou, C-H., 2011, An approach to computing topographic wetness index based on maximum downslope gradient, Precision Agriculture, 12, pp. 32-43.
  43. Rahimifar, A., Bordisheikh, V., Bahrehmand, A., 2011, Introducing and mapping of topographic wetness index (TWI), The fifth conference of watershed management, soil and water resources, March 2011.
  44. Rahmati,O., Tahmasebipour, N., Haghizadeh, A., Pourghasemi, H. R., & Feizizadeh, B., 2017, Evaluating the influence of geo-environmental factors on gully erosion in a semi-arid region of Iran: An integrated framework, Science of The Total Environment, 579, pp. 913-927.
  45. Sadeghi, S.H., & Noormohamadi, F., 2011, Gullies’ allometric models in Dareshahr region, Ilam province, Iran, Whatershed Management Research, 85,Sciences, 35,pp. 180-189.
  46. Shahbazi, kh., Salajegheh, A., Jafar, M., Ahmadi, H., nazari, S., Khosroshahi, M., 2016, Comparison of the threshold hydraulic flow gully erosion in different land uses (CASE STUDY: Al Qasre Shirin, Kermanshah Province), Rangeland and Watershed Journal, Volume 69, Issue 4, Pp. 931-947.
  47. Shahrivar, A., Tehbconsung, C., Jusop, S., Abdul Rahim, A., & Soufi, M.,2012, Roles of SAR and EC in Gully Erosion Development (A Case Study of Kohgiloye va Boyerahmad Province, Iran), Journal of Research in Agricultural Science, 8 (1), pp.1-12.
  48. Shit, P. K., Paira, R., Bhunia, G., & Maiti, R., 2015, Modeling of potential gully erosion hazard using geo-spatial technology at Garbheta block, West Bengal in India, Modeling Earth Systems and Environment, 1(1-2), pp. 1-16.
  49. Shit, P.K., Bhunia G.S., Maiti, R., 2013a, Assessment of Factors Affecting Ephemeral Gully Development in Badland Topography: a Case Study at Garbheta Badland (PashchimMedinipur), Int J Geosci4(2), pp.461–470.
  50. Shit, P.K., Bhunia G.S., Maiti, R., 2013a, Assessment of Factors Affecting Ephemeral Gully Development in Badland Topography: a Case Study at Garbheta Badland (PashchimMedinipur), Int J Geosci4(2), pp. 461–470.
  51. Shit, P.K., Bhunia G.S., Maiti, R., 2013b, Assessing the performance of check dams to control rill-gully erosion: small catchment scale study, Int J Curr Res 5(4), pp. 899–906.
  52. Sidorchuk, A., Märker, M., Moretti, S., & Rodolfi, G., 2003, Gully erosion modelling and landscape response in the Mbuluzi River catch- ment of Swaziland, Catena, 50, pp. 507-525.
  53. Soil Science Society of America, 2001, Glossary of Soil Science Terms. Soil Science Society of America, Madison, WI.http://www.soils.org/sssagloss/.
  54. Soliemanpour, s.m., Soufi, m., & Ahmadi, h., 2010, A Study on the Topographic Threshold and Effective Factorson Sediment Production and Gully Development in Neyriz, Fars Province. Journal of Range and Watershed Management, Iranian Journal of Natural Resources, 63 (1), pp.41-53.
  55. Solomonpour, M., Hedayati, B., Sufi, M., And Ahmadi, H., 2015, Determination of the threshold of effective factors on the longitudinal extension of gullies using data mining techniques in Mahoor milati area of Fars province, Engineering Sciences of Iran. 9 (29), pp.47-57.
  56. Suriyaprasit, M., 2008, Digital terrain analysis and image processing for assessing erosion prone areas, M.Sc thesis, International Institute for Geo-Information Science and Earth Observation, Netherland.
  57. Torkashvand, A.M., 2008, Investigation of some methodologies for gully erosion mapping, Journal of Applied Sciences, 8 (13), pp. 2435-2441.
  58. Vandekerckhove, L., Muys, B., Poesen, J., Deweerdt, B., & Coppe, N., 2001, A method for dendrochronological assessment of medium- term gully erosion rates, Catena, 45, pp.123-161.
  59. Vazquez selem L, & Zinck, J.A, 1994, Modelling gully distribution on volcanic terrains in the Huasca area, Central Mexico. ITC Journal, 3, pp. 238-251.
  60. Wilson, J.P., & Gallant, J.C., 2000, Digital terrain analysis. In: Wilson J.P. & Gallant J.C. (Eds.), «Terrain Analysis: Principles and Applications», J. Wiley, New York, pp.1-27.
  61. Zakerinejad, R., & Märker, M., 2014, Prediction of Gully erosion susceptibilities using detailed terrain analysis and maximum entropy modeling: a case study in the Mazayejan Plain, Southwest Iran, Geogr Fis Din Quat, 37(1), pp.
  62. Zakerinejad, R., Maerker, M., 2015, An integrated assessment of soil erosion dynamicswith special emphasis on gully erosion in the Mazayjan basin, southwestern Iran.Nat. Hazards, 79 (1), pp. 25–50.