Abbood, O.G., Mahmood, M.A., Elsayed, H.A. & Guirguis, S., 2016, Hybrid Compression Based Stationary Wavelet Transforms, International Journal & Magazine of Engineering, Technology, Management and Research, 11(3), PP. 524-527.
Acerbi-Junior, F.W., Clever, J.G.P.W. & Schaepman, M.E., 2006, The Assessment of Multi-Sensor Image Fusion Using Wavelet Transforms for Mapping the Brazilian Savanna, International Journal of Applied Earth Observation and Geoinformation, 8(4), PP. 278-288.
Blatter, C., 2018, Wavelets: A Primer, AK Peters/CRC Press.
Brockhaus, J. & Khorram, S., 1992, A Comparison of SPOT and Landsat-TM Data for Use in Conducting Inventories of Forest Resources, International Journal of Remote Sensing, 13(16), PP. 3035-3043.
Cohen, W.B. & Goward, S.N., 2004, Landsat's Role in Ecological Applications of Remote Sensing, AIBS Bulletin, 54(6), PP. 535-545.
Gao, F., Masek J., Schwaller, M. & Hall, F. 2006, On the Blending of the Landsat and MODIS Surface Reflectance: Predicting Daily Landsat Surface Reflectance, IEEE Transactions on Geoscience and Remote Sensing, 44(8), PP. 2207-2218.
Gitelson, A.A., Viña, A., Arkebauer, T.J., Rundquist, D.C., Keydan, G. & Leavitt, B., 2003, Remote Estimation of Leaf Area Index and Green Leaf Biomass in Maize Canopies, Geophysical Research Letters, 30(5).
Gong, P., Wang, J., Yu, L. et al., 2013, Finer Resolution Observation and Monitoring of Global Land Cover: First Mapping Results with Landsat TM and ETM+ Data, International Journal of Remote Sensing, 34(7), PP. 2607-2654.
Hansen, M.C., Roy, D.P., Lindquist, E., Adusei, B.,
Justice, C.O. &
Altstatt, A., 2008,
A Method for Integrating MODIS and Landsat Data for Systematic Monitoring of Forest Cover and Change in the Congo Basin, Remote Sensing of Environment,112(5), PP. 2495-2513.
Healey, S.P., Cohen, W.B., Zhiqiang, Y. &
Krankina, O.N., 2005,
Comparison of Tasseled Cap-based Landsat Data Structures for Use in Forest Disturbance Detection, Remote Sensing of Environment, 97(3), PP. 301-310.
Hilker, T., Wulder, M.A., Coops, N.C., Linke, J.,
McDermid, G.,
Masek, J.G., Gao, F., White, J.C., 2009,
A New Data Fusion Model for High Spatial-and Temporal-Resolution Mapping of Forest Disturbance Based on Landsat and MODIS, Remote Sensing of Environment, 113(8), PP. 1613-1627.
Huang, B. & Song, H., 2012, Spatiotemporal Reflectance Fusion via Sparse Representation, IEEE Transactions on Geoscience and Remote Sensing, 50(10), PP. 3707-3716.
Huang, B., Zhang, H., Song, H., Wang, J. & Song, C., 2013, Unified Fusion of Remote-Sensing Imagery: Generating Simultaneously High-Resolution Synthetic Spatial–Temporal–Spectral Earth Observations, Remote Sensing Letters, 4(6), PP. 561-569.
Huete, A.R., 1988, A Soil-Adjusted Vegetation Index (SAVI), Remote Sensing of Environment, 25(3), PP. 295-309.
Ju, J. & Roy, D.P., 2008, The Availability of Cloud-Free Landsat ETM+ Data over the Conterminous UnitedStates and Globally, Remote Sensing of Environment, 112(3), PP. 1196-1211.
Justice, C.O., Townshend, J.R.G., Vermote, E.F., Masuoka, E., Wolfe, R.E., Saleous, N., Roy, D.P. & Morisette, J.T., 2002, An Overview of MODIS Land Data Processing and Product Status, Remote Sensing of Environment, 83(1-2), PP. 3-15.
Kauth, R.J. & Thomas, G., 1976, The Tasselled Cap--a Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by Landsat, LARS Symposia.
Loya, N. & Keskar, A.G., 2015, Hybridization of Algorithm for Restoration of Impulse Noise Image, Procedia Computer Science, 54, PP. 728-737.
Masek, J.G. & Collatz, G.J., 2006, Estimating Forest Carbon Fluxes in a Disturbed Southeastern Landscape: Integration of Remote Sensing, Forest Inventory, and Biogeochemical Modeling, Journal of Geophysical Research: Biogeosciences, (111)G1.
Masek, J.G., Huang, C., Wolfe, R., Cohen, W., Hall, F., Kutler, J. & Nelson, P., 2008, North American forest Disturbance Mapped from a Decadal Landsat Record, Remote Sensing of Environment, 112(6), PP. 2914-2926.
Michishita, R., Chen, L., Chen, J., Zhu, X. & Xu, B., 2015, Spatiotemporal Reflectance Blending in a Wetland Environment, International Journal of Digital Earth, 8(5), PP. 364-382.
Michishita, R., Jiang, Zh., Gong, P. & Xu, B., 2012a, Bi-Scale Analysis of Multitemporal Land Cover Fractions for Wetland Vegetation Mapping, ISPRS Journal of Photogrammetry and Remote Sensing, 72, PP. 1-15.
Michishita, R., Jiang, Zh. & Xu, B., 2012b, Monitoring Two Decades of Urbanization in the Poyang Lake Area, China through Spectral Unmixing, Remote Sensing of Environment, 117, PP. 3-18.
Nunez, J., Otazu, X., Fors, O., Prades, A., Pala, V. & Arbiol, R., 1999, Multiresolution-Based Image Fusion with Additive Wavelet Decomposition, IEEE Transactions on Geoscience and Remote Sensing, 37(3), PP. 1204-1211.
Paul, L. & Ramamoorthy, D.P., 2013, Synthetic Aperture Radar Image Change Detection Using Fuzzy C-Means Clustering Algorithm, International Journal of Advanced Research in Computer and Communication Engineering, 2(3), PP. 1374-1379.
Pesquet, J.-C., Karim, H. & Carfantan, H., 1996, Time-Invariant Orthonormal Wavelet Representations, IEEE Transactions on Signal Processing, 44(8), PP. 1964-1970.
Price, J.C., 1994, How Unique Are Spectral Signatures?, Remote Sensing of Environment, 49(3), PP. 181-186.
Rouse, J.W., Haas, R.W., Schell, J.A., Deering, D.W., Harlan, J.C., 1974, Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation, Greenbelt: Nasa.
Roy, D.P., Ju, J., Lewis, P.,
Schaaf, C., Gao, F., Hansen, M. &
Lindquist, E., 2008,
Multi-Temporal MODIS–Landsat Data Fusion for Relative Radiometric Normalization, Gap Filling, and Prediction of Landsat Data, Remote Sensing of Environment, 112(6), PP. 3112-3130.
Settle, J. & Drake, N., 1993, Linear Mixing and the Estimation of Ground Cover Proportions, International Journal of Remote Sensing, 14(6), PP. 1159-1177.
Weng, Q., 2011, Advances in Environmental Remote Sensing: Sensors, Algorithms, and Applications, CRC Press.
Woodcock, C.E. & Ozdogan, M., 2012, Trends in Land Cover Mapping and Monitoring, Land Change Science, Springer,PP. 367-377.
Wu, M., Niu, Zh., Wang, Ch., Wu, Ch. & Wang, L., 2012, Use of MODIS and Landsat Time Series Data to Generate High-Resolution Temporal Synthetic Landsat Data Using a Spatial and Temporal Reflectance Fusion Model, Journal of Applied Remote Sensing, 6(1), 063507.
Yang, J., Wright, J., Huang, T.S. & Ma, Y., 2010, Image Super-Resolution via Sparse Representation, IEEE Transactions on Image Processing, 19(11), PP. 2861-2873.
Zhu, X., Cai, F., Tian, J. & Williams, T.K.A., 2018, Spatiotemporal Fusion of Multisource Remote Sensing Data: Literature Survey, Taxonomy, Principles, Applications, and Future Directions, Remote Sensing, 10(4), P. 527.
Zhu, X., Chen, J., Gao, F., Chen, X. & Masek, J.G., 2010, An Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model for Complex Heterogeneous Regions, Remote Sensing of Environment, 114(11), PP. 2610-2623.
Zhu, X. & Liu, D., 2014, Accurate Mapping of Forest Types Using Dense Seasonal Landsat Time-Seriesm, ISPRS Journal of Photogrammetry and Remote Sensing, 96, PP. 1-11.
Zurita-Milla, R., Clevers, J.G.P.W. & Schaepman, M.E., 2008, Unmixing-Based Landsat TM and MERIS FR Data Fusion, IEEE Geoscience and Remote Sensing Letters, 5(3), PP. 453-457.