Abdelaal, M., Fränzle, M. & Hahn, A., 2018, Nonlinear Model Predictive Control for Trajectory Tracking and Collision Avoidance of Underactuated Vessels with Disturbances, Ocean Engineering, 160, PP. 168-180.
Ahearn, S.C., Dodge, S., Simcharoen, A., Xavier, G. & Smith., J.L.D., 2017, A Context-Sensitive Correlated Random Walk: A New Simulation Model for Movement, International Journal of Geographical Information Science, 31(5), PP. 867-883.
Alessandrini, A., Mazzarella, F. & Vespe, M., 2018, Estimated Time of Arrival Using Historical Vessel Tracking Data, IEEE Transactions on Intelligent Transportation Systems, 20(1), PP. 7-15.
Bitner-Gregerse, E.M., Soares, C.G. & Vantorre, M., 2016, Adverse Weather Conditions for Ship Manoeuvrability, Transportation Research Procedia, 14, PP. 1631-1640.
Buchin, M., Dodge, S. & Speckmann, B., 2014, Similarity of Trajectories Taking into Account Geographic Context, Journal of Spatial Information Science, 2014(9), PP. 101-124.
Chatzikokolakis, K., Zissis, D., Spiliopoulos, G. & Tserpes, K., 2018, Mining Vessel Trajectory Data for Patterns of Search and Rescue, EDBT/ICDT Workshops.
de Vries, G.K.D. & van Someren, M., 2012, Machine Learning for Vessel Trajectories Using Compression, Alignments and Domain Knowledge, Expert Systems with Applications, 39(18), PP. 13426-13439.
Filtz, E., de la Cerda, E.S., Weber, M. & Zirkovits, D., 2015, Factors Affecting Ocean-Going Cargo Ship Speed and Arrival Time, Advanced Information Systems Engineering Workshops, Cham, Springer International Publishing.
Gao, M., Shi, G. & Li, S., 2018, Online Prediction of Ship Behavior with Automatic Identification System Sensor Data Using Bidirectional Long Short-Term Memory Recurrent Neural Network, Sensors, 18(12) P. 4211.
Jozefowicz, R., Zaremba, W. & Sutskever, I., 2015, An empirical Exploration of Recurrent Network Architectures, International Conference on Machine Learning, PMLR.
Kim, K.-I. & Lee, K.M., 2018, Context-Aware Information Provisioning for Vessel Traffic Service Using Rule-Based and Deep Learning Techniques, International Journal of Fuzzy Logic and Intelligent Systems, 18(1), PP. 13-19.
Kjerstad, Ø.K. & Breivik, M., 2010, Weather Optimal Positioning Control for Marine Surface Vessels, IFAC Proceedings, 43(20), PP. 114-119.
Kuhn, M. & Johnson, K., 2013, Applied Predictive Modeling, Springer.
Lee, H., Aydin, N., Choi, Y., Lekhavat, S. & Irani, Z., 2018, A Decision Support System for Vessel Speed Decision in Maritime Logistics Using Weather Archive Big Data, Computers & Operations Research, 98, PP. 330-342.
Liu, Y. & Hansen, M., 2018, Predicting Aircraft Trajectories: A Deep Generative Convolutional Recurrent Neural Networks Approach, arXiv Preprint, arxiv: 1812.11670.
McClintock, B.T., Johnson, D.S., Hooten, M.B., Ver Hoef, J.M. & Morales, J.M., 2014, When to Be Discrete: The Importance of Time Formulation in Understanding Animal Movement, Movement Ecology, 2(1), PP. 1-14.
Mehri, S., Alesheikh, A.A. & Basiri, A., 2021, A Contextual Hybrid Model for Vessel Movement Prediction, IEEE Access, 9, PP. 45600-45613.
Nguyen, D.-D., Le Van, C. & Ali, M.I., 2018a, Vessel Trajectory Prediction using Sequence-to-Sequence Models over Spatial Grid, Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems, ACM.
Nguyen, D., Vadaine, R., Hajduch, G., Garello, R. & Fablet, R., 2018b, An AIS-Based Deep Learning Model for Vessel Monitoring, NATO CRME Maritime Big Data Workshop, La Spezia, Italy.
NOAA, 2018, AIS Data for 2017, from https://coast.noaa.gov/htdata/CMSP/AISDataHandler/2017/index.html.
Palmer, J.R., Espenshade, T.J., Bartumeus, F., Chung, C.Y., Ozgencil, N.E. & Li, K., 2013, New Approaches to Human Mobility: Using Mobile Phones for Demographic Research, Demography, 50(3), PP. 1105-1128.
Perez, T., Smogeli, O., Fossen, T. & Sorensen, A.J., 2006, An Overview of the Marine Systems Simulator (MSS): A Simulink Toolbox for Marine Control Systems, Modeling, Identification and Control, 27(4), PP. 259-275.
Saeys, Y., Inza, I. & Larrañaga, P., 2007, A Review of Feature Selection Techniques in Bioinformatics, Bioinformatics, 23(19), PP. 2507-2517.
van Essen, S., Scharnke, J., Bunnik, T., Düz, B., Bandringa, H., Hallmann, R. & Helder, J., 2020, Linking Experimental and Numerical Wave Modelling, Journal of Marine Science and Engineering, 8(3).
Vemula, A., Muelling, K. & Oh, J., 2017, Social Attention: Modeling Attention in Human Crowds, arXiv preprint, arXiv:1710.04689.
Vlachos, M., 2017, Dimensionality Reduction, In: Encyclopedia of Machine Learning and Data Mining, Edited By: C. Sammut and G. I. Webb. Boston, MA, Springer, US, PP. 354-361.
Wang, S., Tang, J. & Liu, H., 2017, Feature Selection, Encyclopedia of Machine Learning and Data Mining, Edited By: C. Sammut and G. I. Webb. Boston, MA, Springer, US, PP. 503-511.
Xiao, F., Ligteringen, H., van Gulijk, C. & Ale, B., 2015, Comparison Study on AIS Data of Ship Traffic Behavior, Ocean Engineering, 95, PP. 84-93.