ریزمقیاس نمایی تصویر مادیس به منظور تهیه نقشه تبخیر-تعرق روزانه با قدرت تفکیک تصویر لندست با استفاده از الگوریتم‌های SADFDT و STARFM

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشگاه تربیت مدرس

2 استادیار گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشگاه تربیت مدرس

3 دانشیار گروه مهندسی آبیاری و زهکشی، دانشگاه تربیت مدرس

چکیده

داده های اخذ شده توسط سنجنده­های ماهواره­ای، به طور معمول به سه دسته تصاویر با قدرت تفکیک مکانی پایین، متوسط و بالا تقسیم می­شوند. بسیاری از تصاویر با قدرت تفکیک مکانی پایین و متوسط و قدرت تفکیک زمانی بالا، به­راحتی در دسترس کاربران هستند، در حالی­که تصاویر با قدرت تفکیک مکانی بالا، در اکثر مواقع دارای قدرت تفکیک زمانی بالایی نیستند و یا به صورت تجاری و با هزینه بالا در دسترس هستند. علاوه بر این، تصاویر با قدرت تفکیک مکانی بالا معمولا فاقد باندهای حرارتی بوده و لذا در مدل­کردن فرآیند­های طبیعی، مانند تبخیر- تعرق با محدودیت مواجه هستند. تولید نقشه­های تبخیر- تعرق روزانه، با قدرت تفکیک مکانی بالا، همواره یکی از چالش­های محققان سنجش ازدور بوده است. هدف این مطالعه، امکان سنجی تولید نقشه­های تبخیر- تعرق روزانه با قدرت تفکیک مکانی 30 متر است. این تحقیق بر روی زمین­های کشت و صنعت امیرکبیر اجرا شده است. برای این منظور ابتدا از بین باندهای 36 گانه تصویر مادیس، باندهایی که از لحاظ طیفی، تقریبا معادل با تصویر لندست 8 بودند، شناسایی شدند. سپس با استفاده از الگوریتم­های SADFAT و STARFM و تصاویر لندست 8 و مادیس، باندهای مرئی و مادون قرمز با قدرت تفکیک زمانی روزانه و قدرت تفکیک مکانی 30 متر تولید شدند و در نهایت با استفاده از الگوریتم سبال، نقشه­های تبخیر- تعرق واقعی از باندهای شبیه سازی شده تولید شدند. مقایسه تبخیر- تعرق­های شبیه­سازی شده با تبخیر- تعرق­های به دست آمده با روش فائو- پنمن- مانتیث نشان دهنده  و  است. همچنین مقایسه تبخیر- تعرق شبیه­سازی سازی شده با تبخیر- تعرق حاصل از تصویر لندست 8، در همان روز نشان­دهنده  و  است که نشان دهنده عملکرد خوب چهارچوب پیشنهادی برای ریز مقیاس نمایی در این مطالعه است. 

کلیدواژه‌ها


عنوان مقاله [English]

MODIS image downscaling using STARFM and SADFAT algorithms for daily Landsat-like spatial resolution evapotranspiration mapping

نویسندگان [English]

  • hamid salehi 1
  • Ali shamsoddini 2
  • Seyed Majid Mirlatifi 3
1 Master of Agricultural Engineering (Irrigation), Tarbiat Modares University
2 Assistant professor, Department of Remote Sensing and GIS, Tarbiat Modares University
3 Associate professor, Department of Irrigation and Drainage, Tarbiat Modares University
چکیده [English]

Satellites acquire data in low, medium, and high spatial resolutions. Freely-available high temporal resolution images are often acquired in medium (or low) spatial resolution and high spatial resolution images usually suffer from a low temporal resolution or from high costs. Moreover, high spatial resolution images are prevented to use in modeling of processes such as evapotranspiration due to the lack of thermal bands. Evapotranspiration mapping with a high spatial and temporal resolutions have been always one of the main subjects in the field of remote sensing. Daily evapotranspiration mapping with a 30 meter spatial resolution is the aim of current study. The case study of the research is Amir-Kabir agro-industrial farms. For this purpose, among 36 bands of MODIS image, those being more spectrally similar to Landsat bands were selected. Then, SADFAT and STARFM algorithms were applied on Landsat 8 and MODIS images to simulate visible and infrared bands with daily temporal resolution and 30-m spatial resolution. Afterward, the simulated bands were used as input for SEBAL algorithm to calculate actual evapotranspiration. Comparing the results with the actual evapotranspiration derived from FAO-Penman-Monteith equation indicated a RMSE of 2.53 mm/day and R2 of 0.69. Also, an RMSE of 0.68 mm/day and R2 of 0.94 were derived when the actual evapotranspiration derived from the downscaled bands were compared with that derived from the Landsat-8 bands. Accordingly, these results showed the efficient performance of the downscaling framework proposed in this study.   

کلیدواژه‌ها [English]

  • Evapotranspiration
  • MODIS, Landsat-8
  • downscaling
  • SEBAL
  • SADFAT
  • STARFM
  1. اکبری، م.، دهقانی سانیج، ح.، حیدری، ن.، 1387، کاربرد سنجش از دور در برآورد سطح زیر کشت، تبخیر- تعرق و مدیریت شبکه‌های آبیاری، مجله آبیاری و زهکشی ایران، جلد 2، شماره 1.
  2. صافی، ر.، میرلطیفی، س.م.، اکبری، م.، 1395، ارزیابی بهره‌وری مصرف آب در مزارع کشت و صنعت نیشکر امیرکبیر با استفاده از اطلاعات ماهواره ای Landsat 8، مجله آبیاری و زهکشی ایران، دوره 10، شماره 1.
  3. قاسمیان یزدی، م.ح.، الیاسی، م.، 1387، ادغام اطلاعات مکانی تصویر آیکونوس و اطلاعات طیفی تصاویر اسپات 4، فصل نامه مدرس علوم انسانی، دوره 14، شماره 1.
  4. Atkinson, P.M., 2013, Downscaling in remote sensing, Intenational Journal of Applied Earth Observation and Geoinformation, 22, 106-114.
  5. Bastiaanssen, W., Menenti, M., Feddes, R. and Holtslag, A., 1998, A remote sensing surface energy balance algorithm for land (SEBAL), Part 1, Formulation. Journal of Hydrology, 212: 198-212.
  6. Bastiaanssen, W.G.M., Waters, R., Allen,R., Tasumi, M and Terzza, R., 2002, Advanced Training and User's Manual of Surface Energy Balance Algorithms for Land, Nasa EOSDIS/Synergy grant from the Raythoen Company through the Idaho Department of water Resources.1:1-98.
  7. Bechtel, B., 2012, Robustness of annual cycle parameters to characterize the urban thermal
  8. Landscapes, IEEE Geoscience and Remote Sensing Letters, 9(5), 876–880.
  9. Brindhu, V.M., Narasimhan, B., Sudheer, K.P., 2013, Development and verification of a non-linear disaggregation method (NL-DisTrad) to downscale MODIS land surface temperature to the spatial scale of Landsat thermal data to estimate evapotranspiration, Remote Sensing of Environment, 135: 118-129.
  10. Bhandari, S., Phinn, S., Gill, T., 2012, Preparing Landsat Image Time Series (LITS) for Monitoring Changes in Vegetation Phenology in Queensland, Australia, Remote Sensing, 4(6), 1856-1886.
  11. Chandrapala, L. and Wimalasuriya, M., 2003, Satellite measurements supplemented with meteorological data to operationally estimate evaporation in Sri Lanka, Agricultural Water Management, 58: 89-107.
  12. Caroline, M., Gevaert, F., Gercia-Haro, J., 2015, A comparison of STARFM and an unmixing based algorithm for Landsat and MODIS data fusion, Remote Sensing of Environment 156 , Pages 34-44.
  13. Gao, B.-C., Montes, M.J., Ahmad, Z., Davis, C.O., 2000, Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space, Applied Optics, 39(6): p. 887-896.
  14. Gao, F., Masek, J., Schwaller, M. & Hall, F., 2006, On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Transactions on Geoscience and Remote Sensing, 44(8), 2207–2218.
  15. Hafeez, M., Chemin, Y., Van De Giesen, N. and Bouman, B., 2002, Field Evapotranspiration Estimation in Central Luzon, Philippines using different sensors: Landsat 7 ETM+, Terra MODIS and ASTER, ISPRS/CIG conference July, P. 2002.
  16. Ha,W., Gowda, P.H. and Howell, T.A., 2013, A review of downscaling methods for remote sensing-based irrigation management, Journal of Irrigation Science. 31: 831-850.
  17. Ha, W., Gowda, P.H. and Howell, T.A., 2013, A review of potential image fusion methods for remote sensing-based irrigation management, Journal of Irrigation Science, 31: 851-869.
  18. Hilker, T., Wulder, M.A., Coops, N.C., Seitz, N., White, J.C., Feng, G., Masek, J.G., Stenhouse, G., 2009, Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model, Remote Sensing Environment, volume113, 1988–1999.
  19. Emelyanova, I.V., McVicar, T. R., Van Niel, T.G., Li, L.T., Van Dijk, A.I.J.M. 2013, Assessing the accuracy of blending Landsat–MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection.,Remote Sensing of Environment 133, 193–209.
  20. Kaufman, Y.J., Tanre, D., Gordon, H.R., Nakajima, T., Lenoble. J., Frouin, R., 1997, Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect, Journal of Geophysical Research: Atmospheres, 102(D14): p. 16815-16830.
  21. Masek, J.G., Vermote, E.F., Saleous, N.E., Wolfe, R., Hall, F.G., Huemmrich, K.F., et al., 2006, A Landsat surface reflectance dataset for North America, 1990–2000, IEEE Geoscience and Remote Sensing Letters, 3(1), 68–72.
  22. Mahour, M., Tolpekin, V., Stein, A., Sharifi, A., 2017, A comparison of two downscaling procedures to increase the spatial resolution of mapping actual evapotranspiration, ISPRS Journal of Photogrammetry and Remote Sensing 126. 56–67.
  23. Pohl, C. and Van Genderen, J.L., 1998, Multisensor Image Fusion in Remote Sensing: Concepts, Methods and Applications (Review Article), International Journal of Remote Sensing, 19, 823-854.
  24. Roy, D.P., Ju, J., Lewis, P., Schaaf, C., Gao, F., Hansen, M., et al., 2008, Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data, Remote Sensing of Environment, 112(6), 3112–3130.
  25. Schaaf, C.B., Gao, F., Strahler, A.H., Lucht, W., Li, X., Tsang, T., Strugnell, N.C., Zhang, X., Jin, Y., Muller, J.P., Lewis, P., Barnsley, M., Hobson, P., Disney, M., Roberts, G., Dunderdale, M., Doll, C., R.d’Entremont, Hu, B., Liang, S. and Privette, J.L., 2002, First operational BRDF, Albedo and Nadirreflectance products from MODIS, Remote Sens. Environ., vol. 83, no. 1/2, pp. 135–148.
  26. Sabins, F.F., 1997, Remote sensing, Principles and interpretation (3rd ed.), NewYork: W.H.Freeman & Co.
  27. Hong, S., Hendrickx, J.M.H., Borchers, B., 2011, Down-Scaling of SEBAL derived evapotranspiration maps from MODIS (250m) to LANDSAT (30m) scale, International Journal of Remote Sensing, 32(21), 6457-6477.
  28. Steiner, J.L., Howell, T.A. & Schneider, A.D., 1991, Lysimetric evaluation of daily potential evapotranspiration models for grain sorghum, Agronomy Journal, 83, 240-247.
  29. Tasumi, M., Allen, R.G., Trezza, R., 2008, At-surface reflectance and albedo from satellite for operational calculation of land surface energy balance, Journal of hydrologic engineering, 13(2): p. 51-63.
  30. Weng. Q., Fu, P., Gao. F., 2014, Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data, Remote Sensing of Environment 145, 55–67.
  31. Weng, Q., Liu, H., Liang, B.Q. & Lu, D.S., 2008, The spatial variations of urban land surface temperatures: Pertinent factors, zoning effect, and seasonal variability, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1(2), 154–166.
  32. Zhu, X.L., Chen, J., Gao, F., Chen, X.H. & Masek, J.G., 2010, An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions, Remote Sensing of Environment, 114(11), 2610–2623.