پیش‌بینی تأثیرات تغییر اقلیم بر پراکنش ماهی بنی (Mesopotamichthys sharpeyi) در سناریوهای اقلیمی متفاوت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه تنوع زیستی و مدیریت اکوسیستم‌ها، پژوهشکدة علوم محیطی، دانشگاه شهید بهشتی، تهران

2 استادیار، گروه تنوع زیستی و مدیریت اکوسیستم‌ها، پژوهشکدة علوم محیطی، دانشگاه شهید بهشتی، تهران

چکیده

ازآن‌جاکه تغییر اقلیم یکی از مهم‌ترین و بزرگ‌ترین تهدیدها برای طبیعت و تنوع زیستی محسوب ‌می‌شود و مدیریت و حفاظت گونه‌ها را دشوار می‌سازد، پیش‌بینی و تعیین تأثیرات آن به بیان راهکارهای مناسب حفاظتی و اتخاذ تصمیمات مدیریتی کمک شایانی خواهد کرد. در مطالعة حاضر، تأثیرات تغییر اقلیم بر پراکنش ماهی بنی (Mesopotamichthys sharpeyi) با استفاده از مدل مکسنت (MaxEnt) در محیط نرم‌افزار R پیش‌بینی شد. متغیرهای محیطی به‌کاررفته شامل شیب (Slope)، محدودة سالیانة دما (Temperature Annual Range)، جریان تجمعی (Annual Accumulation)، بارش سالانه (Annual ‎Precipitation)، دمای متوسط سالانه (Annual Mean Temperature) و مساحت حوضة بالادست (Upstream Drainage Area) است. با توجه به نتایج به‌دست‌آمده، عملکرد مدل در پیش‌بینی گونه براساس معیار AUC (Area Under the Curve) عالی (989/0) بود. همچنین دمای متوسط سالیانه و شیب، به‌ترتیب، مهم‌ترین متغیرهای محیطی مؤثر در تعیین پراکنش این گونه محسوب می‌شوند. به‌علاوه، دامنة پراکنش این گونه در هر دو سناریوی خوش‌بینانه (RCP 2.6) و بدبینانه (RCP 8.5)، طی 2050 و 2080 میلادی، با کاهش مواجه خواهد شد؛ در نتیجه، به‌منظور حفاظت از این گونه، لازم است مدیران اقدامات مناسب را در زمینة تعدیل تأثیرات تغییرات اقلیمی و کاهش تهدیدهای ناشی از این تأثیرات، شناسایی و عملی کنند.

کلیدواژه‌ها


عنوان مقاله [English]

Predicting the Impacts of Climate Change on the Distribution of Benni fish (Mesopotamichthys sharpeyi) Distribution under Different Climatic Scenarios

نویسندگان [English]

  • Parinaz Ahmadi 1
  • Hossein Mostafavi 2
1 M.Sc. Student, Dep. of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran
2 Assistant Prof., Dep. of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran
چکیده [English]

Since climate change is one of the most important and biggest threats to nature and biodiversity, it makes it difficult to manage and protect species. Predicting and determining its effects will considerably help to provide appropriate protection solutions as well as management plans. In the present study, the impacts of climate change on the distribution of Mesopotamichthys sharpeyi species were forecasted by using the MaxEnt model in the R software environment. The environmental variables included slope, temperature annual range, flow accumulation, annual precipitation, annual mean temperature, and upstream drainage area. According to the results, the performance of the model in predicting the species was excellent (0.989) based on the AUC (Area Under the Curve) criterion. Moreover, the annual mean temperature and slope have been the most important environmental variables in determining the distribution of this species, respectively. In addition, the distribution range of this species will decrease in both the optimistic (RCP 2.6) and pessimistic (RCP 8.5) scenarios of 2050 and 2080. In conclusion, in order to protect this species, it is necessary for decision-makers to identify and implement appropriate actions in order to adapt the effects of climate change and reduce the related threats.

کلیدواژه‌ها [English]

  • Biodiversity
  • Conservation
  • Climate change
  • Species distribution modeling
  • Iran
Abbasi Kasbi, A., Ranjbar, A. & Mokhtarpour, A., 2017, Modeling the Distribution of Species in Order to Know and Protect (Conserve) Marine Ecosystems, The Second National Conference on Sustainable Development of the Sea, Khorramshahr Marine Science and Technology University.
Abdelaal, T., Michielsen, L., Cats, D., Hoogduin, D., Mei, H., Reinders, M.J. & Mahfouz, A., 2019, A Comparison of Automatic Cell Identification Methods for Single-Cell RNA Sequencing Data, Genome biology, 20(1), P. 194.
Buisson, L., Thuiller, W., Lek, S., Lim, P.U.Y. & Grenouillet, G., 2008, Climate Change Hastens the Turnover of Stream Fish Assemblages, Global Change Biology, 14(10), PP. 2232-2248.
Cheung, W.W.L., Lam, V.W.Y., Sarmiento, J.L., Kearney, K., Watson, R. & Pauly, D., 2009, Projecting Global Marine Biodiversity Impacts under Climate Change Scenarios, F I S H and F I S H E R I E S Blackwell Publishing Ltd., 10, PP. 235-251.
Coad, B.W., 1980, A Re-Description of Aphanius Ginaonis (Holly, 1929) from Southern Iran (Osteichthyes: Cyprinodontiformes), Journal of Natural History, 14(1), PP. 33-40.
Coad, B.W., 2018, Freshwater Fishes of Iran. Available: www.briancoad.com/Species%20Accounts/Contents%20new. htm. (April 2019).
Darabi, M., Mostafavi, H., Rahimi, R., Teimori, A. & Farshchi, P., 2020, Modeling the Habitat Suitability of Botak-e-Fars, Cyprinion Tenuiradius Heckel, 1849 and Determining the Impact of Climate Change on its Distribution in Fars Province, Journal of Applied Ichthyological Research, 8(5), PP. 0-0.
Davis, M.B., 1986, Climatic Instability, Time Lags, and Community Disequilibrium, In: Community ecology. Ed. by Diamond, J. and T.J. Case. Harper and Row, Community Ecology, New York, PP. 269-284.
Ebrahimi, E., 2017, Importance of Species Distribution Modeling in Conservation of Biodiversity, Zist Sepehr Student Magazine, 12(1), PP. 1-7.
Elith, J., Graham, C.H., Anderson, R.P., Dudík, M., Ferrier, S., Guisan, A., ... & Zimmermann, N.E., 2006, Novel Methods Improve Prediction of Species’ Distributions from Occurrence Data, Ecography, 29(2), PP. 129-151.
Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E. & Yates, C.J., 2011, A Statistical Explanation of MaxEnt for Ecologists, Diversity and Distributions, 17(1), PP. 43-57.
Farajzadeh, M. & Ghasemifar, E., 2020, Basics of Weather Change (Climate) and Its Consequences, Tehran, Publication of Entekhab.
Ficke, A.D., Myrick, C.A. & Hansen, L.J., 2007, Potential Impacts of Global Climate Change on Freshwater Fisheries, Reviews in Fish Biology and Fisheries, 17(4), PP. 581-613.
Firouz, E., Hassinger, J.D. & Ferguson, D.A., 1970, The Wildlife Parks and Protected Regions of Iran. Biological Conservation, 3(1), PP. 37-45.
Guisan, A., Thuiller, W. & Zimmermann, N., 2017, Habitat Suitability and Distribution Models with Applications in R, Cambridge: Cambridge University Press.
Heino, J., Virkkala, R. & Toivonen, H., 2009, Climate Change and Freshwater Bio-diversity: Detected Patterns, Future Trends and Adaptations in Northern Regions, Biological Reviews, 84(1), PP. 39-54.
IPCC, 2007, The Physical Science Basis, Working Group I – Technical Summary, Summary for Policymakers, Working Group I of the Intergovernmental Panel on Climate Change.
IPCC, 2014, Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, & L.L.White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1132 PP.
Jones, M.C., Dye, S.R., Fernandes, J.A., Frölicher, T.L., Pinnegar, J.K., Warren, R. & Cheung, W.W., 2013, Predicting the Impact of Climate Change on Threatened Species in UK Waters. PloS one, 8(1), P. e54216.
Jouladeh-Roudbar, A., Ghanavi, H.R. & Doadrio, I., 2020, Ichthyofauna from Iranian Freshwater: Annotated Checklist, Diagnosis, Taxonomy, Distribution and Conservation Assessment, Zoological Studies, 59.
Keyvani, Y., Nasri, M., Abbasi, K. & Abdoli, A., 2016, Atlas of Inland Water Fishes of Iran, Iran Department of Environment.
Kim, Z., Shim, T., Koo, Y.M., Seo, D., Kim, Y.O., Hwang, S.J. & Jung, J., 2020, Predicting the Impact of Climate Change on Freshwater Fish Distribution by Incorporating Water Flow Rate and Quality Variables, Sustainability, 12(23), P. 10001.
Leathwick, J.R., 1998, Are New Zealand’s Nothofagus Species in Equilibrium with Their Environment?, Journal of Vegetation Science, 9, PP. 719-732.
Lobo, J.M., Jiménez‐Valverde, A. & Real, R., 2008, AUC: A Misleading Measure of the Performance of Predictive Distribution Models, Global Ecology and Biogeography, 17(2), PP. 145-151.
Lovejoy, T.E., 2006, Climate Change and Biodiversity, The Energy and Resources Institute (TERI).
Makki, T., Mostafavi, H., Matkan, A.A. & Aghighi, H., 2020, Predicting Effects of Climate Change on Beluga (Huso huso Linnaeus, 1754) Migration in the Rivers of the Southern Part of the Caspian Sea Basin, Journal of Aquaculture Sciences, 8(15).
Makki, T., Mostafavi, H., Matkan, A., & Aghighi, H., 2021, Modelling Climate-Change Impact on the Spatial Distribution of Garra Rufa (Heckel, 1843) (Teleostei: Cyprinidae), Iranian Journal of Science and Technology, Transactions A: Science, 45(3), PP. 795-804.
Mansouri Daneshvar, M.R., Ebrahimi, M. & Nejadsoleymani, H., 2019, An Overview of Climate Change in Iran: Facts and Statistics, Environmental Systems Research, 8(1), PP. 1-10.
Margules, C.R. & Pressey, R.L., 2000, Systematic Conservation Planning, Nature, 405, PP. 243-253.
Mirzaee, R., Homami, M., Esmaeile, A. & Rezaee, H., 2014, Distribution Modelling of Lesser Kestrel (Falco Naumanni) in Golestan Province, Iran, Environmental Researches, 4(8), PP. 149-156.
Mostafavi, H. & Kambouzia, J., 2019, Impact of Climate Change on the Distribution of Brown Trout, Salmo Trutta Linnaeus, 1758 (Teleostei: Salmonidae) Using Ensemble Modelling Approach in Iran, Iranian Journal of Ichthyology, 6, PP. 73-81.
Mostafavi, H., Pletterbauer, F., Coad, B.W., Mahini, A.S., Schinegger, R., Unfer, G., Trautwein C. & Schmutz, S., 2014, Predicting Presence and Absence of Trout (Salmo Trutta) in Iran, Limnologica, 46, PP. 1-8.
Mostafavi, H., Rashidian, M. & Valavi, R., 2018, Modelling the Effects of Climate Change on Distribution of Kura Bleak (Alburnus filippii Kessler, 1877) on the Iranian Scale, JAIR, 6(4), PP. 1-12.
Mostafavi, H., Kordjazi, Z., Valavi, R., Shafizadeh-Moghadam, H., Kambouzia, J. & Infante, D.M., 2019a, Ensemble Modelling of Sensitive Stream Fish Species Distributions in Iran: Expanding Knoowledge to Aid Species Conservation, American Fisheries Society Symposium, 90, PP. 1-5.
Mostafavi, H., Teimori, A., Schinegger, R. & Schmutz, S., 2019b, A New Fish Based Multi-Metric Assessment Index for Cold-Water Streams of the Southern Caspian Sea Basin in Iran, Environmental Biology of Fishes, 102, PP. 645-662.
Niknam, A. & Asadi Moghaddam, B., 2012, Investigating the Effects of Climate Change on the Water Ecosystems of the Country and Appropriate Solutions to Reduce and Control Its Negative Effects with Emphasis on the Caspian Sea, National Congress On Aquatic Animals, Bushehr.
Pachauri, R.K., Allen, M.R., Barros, V., Broome, J., Cramer, W., Christ, R., … & Dasgupta, P., 2014, Climate Change 2014: Synthesis Report, Contribution of Working Group I, ll and lll to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change: IPCC.
Pearson, R.G., Raxworthy, C.J., Nakamura, M. & Townsend Peterson, A., 2007, Predicting Species Distributions from Small Numbers of Occurrence Records: A Test Case Using Cryptic Geckos in Madagascar, Journal of Biogeography, 34 (1), PP. 102-117.
Phillips, S.J., Anderson, R.P. & Schapire, R.E., 2006, Maximum Entropy Modeling of Species Geographic Distributions, Ecological Modelling, 190, PP. 231-259.
R Core Team, 2018, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna.
Ricciardi, A. & Rasmussen, J.B., 1999, Extinction Rates of North American Freshwater Fauna, Conservation Biology, 13(5), PP. 1220-1222.
Saberfar, R., Falahatkar, S. & Kia, S.H., 2016, A Review of the Species Distribution Models with the Introduction of the Ensemble, The Third International Conference on Management in the 21st Century.
Sala, O.E., Chapin, F.S., Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R., … & Kinzig, A., 2000, Global Biodiversity Scenarios for the Year 2100, Science, 287(5459), PP. 1770-1774.
Shoreybi, Z., Khalilipour, O. & Mohammad Asgari, H., 2018, Habitat Suitability Modelling of Marbled Teal (Marmaronetta Anguistirostris) Based on MaxEnt Method, Journal of Animal Environment, 10(2), PP. 57-64.
Soboti, Y., 2011, Warmed Earth: What Has the Climate of the 21st Century to Offer, Institute of Geography and Cartography of Gita, Tehran, 240 P.
Tuan, T.A., Long, H.V., Kumar, R., Priyadarshini, I. & Son, N.T.K., 2019, Performance Evaluation of Botnet DDoS Attack Detection Using Machine Learning, Evolutionary Intelligence, 1-12.
Valavi, R., Elith, J., Lahoz‐Monfort, J.J. & Guillera‐Arroita, G., 2019, Block CV: An R Package for Generating Spatially or Environmentally Separated Folds for KFold CrossValidation of Species Distribution Models, Methods in Ecology and Evolution, 10(2), PP. 225-232.
Verdipour, M., 2012, Application of Habitat Desirability Modeling in Wildlife Management, The First National Conference on Environment, Energy and Biodefense, Tehran.
Yousefi, M., Jouladeh-Roudbar, A. & Kafash, A., 2020, Using Endemic Freshwater Fishes as Proxies of Their Ecosystems to Identify High Priority Rivers for Conservation under Climate Change. Ecological Indicators, 112, PP. 106-137.