بررسی آلودگی هوا در دوران کرونا و پیش از آن در کلان‌شهرهای تهران، اصفهان و قم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه سنجش از دور و GIS، دانشگاه تربیت مدرس

2 دانشیار دانشکده اقتصاد، مدیریت و علوم اجتماعی ، دانشگاه شیراز

چکیده

فعالیت‌های صنعتی و ترافیک شهری منجر به افزایش آلودگی هوا در کلان‌شهرها می‌شود و این آلودگی سبب افزایش بیماری‌های بسیاری در افراد شده است؛ بنابراین بررسی و مطالعة مناطق آلوده برای مدیریت شهرها مهم است. با توجه ‌به اهمیت موضوع، هدف از این مطالعه بررسی وضعیت آلودگی هوا در کلان‌شهرهای تهران، اصفهان و قم از نظر آلاینده‌های NO2، CO2، CO، و CH4، پیش از کرونا (2019-2018) و حین کرونا (2021-2020) طی چهار فصل متفاوت سال است. همچنین با استفاده از روش همبستگی پیرسون و شبکه‌های عصبی RBF (شبکة عصبی تابع شعاعی پایه)، ارتباط بین دما و آلاینده‌ها بررسی شد. نتایج این مطالعه نشان داد که در کلان‌شهرهای تهران و اصفهان، میزان آلودگی هوا بیشتر از سایر مناطق است؛ همچنین میزان آلودگی در دوران کرونا در قیاس با پیش از کرونا، کاهش چشمگیری داشته است. افزون‌براینها نتایج حاصل از روش رگرسیون بیان کرد که افزایش دما با میزان آلودگی ارتباط معنی‌داری دارد (R2=0.981)؛ به‌گونه‌ای‌که در مناطق دارای آلودگی، میزان دما هم بیشتر بوده است. نتایج استفاده از روش RBF نیز حاکی از دقت بالای مدل در پیش‌بینی میزان آلودگی هوا بوده است (R2 = 0.85 ، RMSE = 0.08)؛ در نتیجه، این تحقیق بر نیاز به اقدامات جامع به‌منظور کاهش آلودگی هوا، به‌ویژه در مناطق بسیار آلوده، تأکید می‌کند.
 

کلیدواژه‌ها


عنوان مقاله [English]

Investigating Air Pollution during the Corona Era and before that in the Metropolises of Tehran, Isfahan and Qom

نویسندگان [English]

  • M Shaygan 1
  • Marzieh Mokarram 2
1 Assistant Professor, Dept. of Remote Sensing & GIS, Tarbiat Modares University, Tehran, Iran
2 Associate Professor, Department of Geography, Faculty of Economics, Management and Social sciences, Shiraz University, Shiraz, Iran
چکیده [English]

Industrial activities and urban traffic contribute to increased air pollution in large cities, resulting in a rise in various diseases among the population. Consequently, studying and investigating polluted areas is crucial for effective city management. This study aims to examine the air pollution levels in Tehran, Isfahan, and Qom cities, focusing on NO2, CO2, CO, and CH4 pollutants, during two distinct periods: pre-COVID-19 (2018-2019) and during COVID-19 (2020-2021), across all four seasons. By employing the Pearson correlation method and RBF neural networks (radial basis function neural network), the relationship between temperature and pollutants was explored. The findings reveal higher levels of air pollution in Tehran and Isfahan compared to other regions. Moreover, the study demonstrates a significant reduction in pollution during the COVID-19 era compared to the pre-COVID-19 period. Additionally, the regression analysis highlights a strong correlation between temperature increase and pollution levels (R2=0.981). Furthermore, the RBF method exhibits high accuracy in predicting air pollution levels (R2 = 0.85, RMSE = 0.08). In conclusion, this research underscores the urgent need for comprehensive measures to mitigate air pollution, particularly in highly polluted areas, and emphasizes the role of temperature as a crucial factor affecting pollution levels.

کلیدواژه‌ها [English]

  • air pollution
  • remote sensing
  • neural networks
  • metropolis
  • earth surface temperature
Al-Ghussain, L., 2019, Global Warming: Review on Driving Forces and Mitigation, Environ. Prog. Sustain. Energy, 38, PP. 13-21. https://doi.org/10.1002/ EP.13041.
Asgari, M., Farnaghi, M. & Ghaemi, Z., 2017, Predictive Mapping of Urban Air Pollution Using Apache Spark on a Hadoop Cluster, ACM Int. Conf. Proceeding Ser., PP. 89-93. https://doi.org/10.1145/3141128.3141131.
Baldasano, J.M., 2020, COVID-19 Lockdown Effects on Air Quality by NO2 in the Cities of Barcelona and Madrid (Spain), Sci. Total Environ., 741, P. 140353. https://doi.org/10.1016/J.SCITOTENV.2020.140353.
Barua, S. & Nath, S.D., 2021, The Impact of COVID-19 on Air Pollution: Evidence from Global Data, J. Clean. Prod., 298, P. 126755. https://doi.org/10.1016/J.JCLEPRO.2021.126755.
Bekesiene, S., Meidute-Kavaliauskiene, I. & Vasiliauskiene, V., 2021, Accurate Prediction of Concentration Changes in Ozone as an Air Pollutant by Multiple Linear Regression and Artificial Neural Networks, Math. 2021, Vol. 9, Page 356 9, 356. https://doi.org/10.3390/MATH9040356.
Bera, B., Bhattacharjee, S., Shit, P.K., Sengupta, N. & Saha, S., 2020, Significant Impacts of COVID-19 Lockdown on Urban Air Pollution in Kolkata (India) and Amelioration of Environmental Health, Environ. Dev. Sustain., 23(5), PP. 6913-6940. https://doi.org/10.1007/S10668-020-00898-5.
Berman, J.D. & Ebisu, K., 2020, Changes in U.S. Air Pollution during the COVID-19 Pandemic, Sci. Total Environ., 739, P. 139864. https://doi.org/10.1016/J.SCITOTENV.2020.139864.
Chudnovsky, A.A., 2021, Urban Remote Sensimg: Monitoring Air Pollution in the Urban Environment by Remote Sensing, John Wiley & Sons Ltd.
de Bont, J., Jaganathan, S., Dahlquist, M., Persson, Å., Stafoggia, M. & Ljungman, P., 2022, Ambient Air Pollution and Cardiovascular Diseases: An Umbrella Review of Systematic Reviews and Meta-Analyses, J. Intern. Med., 291, PP. 779-800. https://doi.org/10.1111/JOIM.13467.
Demirkesen, A.C., Evrendilek, F., Berberoglu, S. & Kilic, S., 2006, Coastal Flood Risk Analysis Using Landsat-7 ETM+ Imagery and SRTM DEM: A Case Study of Izmir, Turkey, Environ. Monit. Assess., 131, PP.

 
 
      293-300. https://doi.org/10.1007/S10661-006-9476-2.
Duncan, J.M.A., Boruff, B., Saunders, A., Sun, Q., Hurley, J. & Amati, M., 2019, Turning Down the Heat: An Enhanced Understanding of the Relationship between Urban Vegetation and Surface Temperature at the City Scale, Sci. Total Environ., 656, PP. 118-128. https://doi.org/10.1016/J.SCITOTENV.2018.11.223.
Goharipour, H. & Firoozabadi, S.S., 2022, Assessing the Impacts of Changes in the Currency Exchange Rate on Air Pollution in Tehran: A Sectoral Review, Eur. J. Bus. Manag. Res., 7, PP. 12-19. https://doi.org/10.24018/EJBMR.2022.7.3.1411.
Grainger, C. & Schreiber, A., 2019, Discrimination in Ambient Air Pollution Monitoring?, AEA Pap. Proc., 109, PP. 277-282. https://doi.org/10.1257/PANDP.20191063.
Guilmoto, C.Z., 2022, An Alternative Estimation of the Death Toll of the Covid-19 Pandemic in India, PLoS One, 17,P. e0263187. https://doi.org/10.1371/JOURNAL.PONE.0263187.
Hanst, P.L., 1970, Infrared Spectroscopy and Infrared Lasers in Air Pollution Research and Monitoring, Sage Journals, 24(2), PP. 161-174. https://doi.org/10.1366/000370270774371930.
Hu, Y., Rein, G., Hu, Y. & Rein, G., 2022, Development of Gas Signatures of Smouldering Peat Wildfire from Emission Factors, Int. J. Wildl. Fire, 31, PP. 1014-1032. https://doi.org/10.1071/WF21093.
Hwang, S.H. & Park, W.M., 2019, Indoor Air Concentrations of Carbon Dioxide (CO2), Nitrogen Dioxide (NO2), and Ozone (O3) in Multiple Healthcare Facilities, Environ. Geochemistry Heal., 425(42), PP. 1487-1496. https://doi.org/ 10.1007/S10653-019-00441-0.
Ju, T., Liang, Z., Liu, W., Li, B., Huang, R. & Geng, T., 2022, Monitoring of Air Pollution by Remote Sensing in Lanzhou City from 2010 to 2019, Water. Air. Soil Pollut., 233, PP. 1-18. https://doi.org/ 10.1007/S11270-022-05830-3/METRICS.
Kuantan, M., Nor, S.A., Zulkifli, M.R., Satrial, Z., Osman, A., Khan, A., Chandra, S., Parameshwara, M.C., Effendi, A., Budianto, B., Immanuel, G.S., Rakhman, A., Kinasih, S.A.K.W. & Boer, R., 2021, Coverage Sensitivity of High-Rise Tower NIES Monitoring System, IOP Conf. Ser. Earth Environ. Sci., 893, P. 012072. https://doi.org/10.1088/1755-1315/893/1/012072.
Kumar, P., Tokas, J., Kumar, N., Lal, M., Singal, H. & Praveen Kumar, C., 2018, Climate Change Consequences and Its Impact on Agriculture and Food Security, Int. J. Chem. Stud., 6, PP. 124-133.
Li, J., Han, X., Zhang, X., Sheveleva, A.M., Cheng, Y., Tuna, F., McInnes, E.J.L., McCormick McPherson, L.J., Teat, S.J., Daemen, L.L., Ramirez-Cuesta, A.J., Schröder, M. & Yang, S., 2019, Capture of Nitrogen Dioxide and Conversion to Nitric Acid in a Porous Metal–Organic Framework, Nat. Chem., 1112(11), PP. 1085-1090. https://doi.org/10.1038/s41557-019-0356-0.
Maia Lins, E.A. & Maia Lins, A. da S.B., 2020, An Analysis of the Aspects and Impacts to Human Health Caused by Effluents from a Solid Waste Landfill: Case Study, Int. J. Adv. Eng. Technol., 4(2), PP. 14-23. www.newengineeringjournal.com 4.
Mokarram, M., Zarei, A.R. & Etedali, H.R., 2021, Optimal Location of Yield with the Cheapest Water Footprint of the Crop Using Multiple Regression and Artificial Neural Network Models in GIS, Theor. Appl. Climatol., 143, PP. 701-712. https://doi.org/10.1007/S00704-020-03413-Y.
Moustris, K.P., Proias, G.T., Larissi, I.K., Nastos, P.T., Koukouletsos, K.V. & Paliatsos, A.G., 2015, Health Impacts Due to Particulate Air Pollution in Volos City, Greece, http://dx.doi.org/10.1080/10934529.2015.1079099 51, 15–20. https://doi.org/10.1080/ 10934529.2015.1079099.
Müller, A., Österlund, H., Marsalek, J. & Viklander, M., 2020, The Pollution Conveyed by Urban Runoff: A Review of Sources, Sci. Total Environ., 709, P. 136125. https://doi.org/10.1016/J.SCITOTENV.2019.136125.
Ngo, T.X., Do, N.T.N., Phan, H.D.T., Tran, V.T., Mac, T.T.M., Le, A.H., Do, N.V., Bui, H.Q. & Nguyen, T.T.N., 2021. Air Pollution in Vietnam during the COVID-19 Social Isolation, Evidence of Reduction in Human Activities, International Journal of Remote Sensing, 42(16), PP. 6126–6152.
Nichol, J.E., Bilal, M., Ali, A.M. & Qiu, Z., 2020, Air Pollution Scenario over China during COVID-19, Remote Sens., 12(13), P. 2100. https://doi.org/10.3390/RS12132100.
Organization, W.H., 2016, Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease, Clean Air J., 26, P. 6. https://doi.org/10.17159/2410-972X/2016/V26N2A4.
Othman, M. & Latif, M.T., 2021, Air Pollution Impacts from COVID-19 Pandemic Control Strategies in Malaysia, J. Clean. Prod., 291, P. 125992. https://doi.org/ 10.1016/J.JCLEPRO.2021.125992.
Pedruzzi, R., Baek, B.H., Henderson, B.H., Aravanis, N., Pinto, J.A., Araujo, I.B., Nascimento, E.G.S., Reis Junior, N.C., Moreira, D.M. & de Almeida Albuquerque, T.T., 2019, Performance Evaluation of a Photochemical Model Using Different Boundary Conditions over the Urban and Industrialized Metropolitan Area of Vitória, Brazil, Environ. Sci. Pollut. Res., 26(16), PP. 16125-16144. https://doi.org/ 10.1007/S11356-019-04953-1.
Pei, Z., Han, G., Ma, X., Su, H. & Gong, W., 2020, Response of Major Air Pollutants to COVID-19 Lockdowns in China, Sci. Total Environ., 743, P. 140879. https://doi.org/10.1016/J.SCITOTENV.2020.140879.
Polii, B., Najoan, J. & Ogie, T., 2021, Analysis of Greenhouse Gases and Odor Levels in the Sumompo TPA, Manado City, North Sulawesi, Agri-Sosioekonomi, 17(1), PP. 1-8. https://doi.org/10.35791/AGRSOSEK.17.1.2021.32230.
Prockop, L.D. & Chichkova, R.I., 2007, Carbon Monoxide Intoxication: An Updated Review, J. Neurol. Sci., 262(1-2), PP. 122-130. https://doi.org/10.1016/J.JNS.2007.06.037.
Rahaman, Z.A., Kafy, A.Al., Saha, M., Rahim, A.A., Almulhim, A.I., Rahaman, S.N., Fattah, M.A., Rahman, M.T., S, K., Faisal, A.Al. & Al Rakib, A., 2022, Assessing the Impacts of Vegetation Cover Loss on Surface Temperature, Urban Heat Island and Carbon Emission in Penang City, Malaysia, Build. Environ., 222, P. 109335. https://doi.org/10.1016/J.BUILDENV.2022.109335.
Saevarsdottir, G., Kvande, H. & Welch, B.J., 2019, Aluminum Production in the Times of Climate Change: The Global Challenge to Reduce the Carbon Footprint and Prevent Carbon Leakage, JOM, 72(1), PP. 296-308. https://doi.org/10.1007/S11837-019-03918-6.
Selvam, S., Muthukumar, P., Venkatramanan, S., Roy, P.D., Manikanda Bharath, K. & Jesuraja, K., 2020, SARS-CoV-2 Pandemic Lockdown: Effects on Air Quality in the Industrialized Gujarat State of India, Sci. Total Environ., 737, P. 140391. https://doi.org/10.1016/J.SCITOTENV.2020.140391.
Sharma, L.K. & Verma, R.K., 2021, Latitudinal Fluctuation in Global Concentration of CO2 and CH4 from Shortwave Infrared Spectral Observation by GOSAT during COVID-19, https://doi.org/10.1080/17538947.2021.1980126. https://doi.org/10.1080/17538947.2021.1980126.
Shi, Z., Song, C., Liu, B., Lu, G., Xu, J., Van Vu, T., Elliott, R.J.R., Li, W., Bloss, W.J. & Harrison, R.M., 2021, Abrupt but Smaller than Expected Changes in Surface Air Quality Attributable to COVID-19 Lockdowns, Sci. Adv., 7. https://doi.org/ 10.1126/SCIADV.ABD6696.
Soeder, D.J., 2021, Greenhouse Gas Sources and Mitigation Strategies from a Geosciences Perspective, Adv. Geo-Energy Res., 5, PP. 274-285. https://doi.org/ 10.46690/AGER.2021.03.04.
Tondelli, S., Farhadi, E., Akbari Monfared, B., Ataeian, M., Tahmasebi Moghaddam, H., Dettori, M., Saganeiti, L. & Murgante, B., 2022, Air Quality and Environmental Effects Due to COVID-19 in Tehran, Iran: Lessons for Sustainability, Sustain., 14, P. 15038 14, 15038. https://doi.org/ 10.3390/SU142215038.
Vadrevu, K. & Lasko, K., 2018, Intercomparison of MODIS AQUA and VIIRS I-Band Fires and Emissions in an Agricultural Landscape—Implications for Air Pollution Research, Remote Sens., 10(7), P. 978. https://doi.org/10.3390/RS10070978.
Vafa-Arani, H., Jahani, S., Dashti, H., Heydari, J. & Moazen, S., 2014, A System Dynamics Modeling for Urban Air Pollution: A Case Study of Tehran, Iran, Transp. Res. Part D Transp. Environ., 31, PP. 21-36. https://doi.org/10.1016/J.TRD.2014.05.016.
Wang, G., Xia, X., Liu, S., Zhang, L., Zhang, S., Wang, J., Xi, N. & Zhang, Q., 2021, Intense Methane Ebullition from Urban Inland Waters and Its Significant Contribution to Greenhouse Gas Emissions, Water Res., 189, P. 116654. https://doi.org/10.1016/J.WATRES.2020.116654.
Weldeslassie, T., Naz, H., Singh, B. & Oves, M., 2017, Chemical Contaminants for Soil, Air and Aquatic Ecosystem, Mod. Age Environ. Probl. their Remediat., 1-22. https://doi.org/10.1007/978-3-319-64501-8_1/COVER.
Yao, R., Wang, L., Huang, X., Gong, W. & Xia, X., 2019, Greening in Rural Areas Increases the Surface Urban Heat Island Intensity, Geophys. Res. Lett., 46, PP. 2204-2212. https://doi.org/10.1029/2018GL081816.
Yuan, M., Song, Y., Huang, Y., Shen, H. & Li, T., 2019, Exploring the Association between the Built Environment and Remotely Sensed PM2.5 Concentrations in Urban Areas, J. Clean. Prod., 220, PP. 1014-1023. https://doi.org/10.1016/J.JCLEPRO.2019.02.236.
Yuchi, W., Gombojav, E., Boldbaatar, B., Galsuren, J., Enkhmaa, S., Beejin, B., Naidan, G., Ochir, C., Legtseg, B., Byambaa, T., Barn, P., Henderson, S.B., Janes, C.R., Lanphear, B.P., McCandless, L.C., Takaro, T.K., Venners, S.A., Webster, G.M. & Allen, R.W., 2019, Evaluation of Random Forest Regression and Multiple Linear Regression for Predicting Indoor Fine Particulate Matter Concentrations in a Highly Polluted City, Environ. Pollut., 245, PP. 746-753. https://doi.org/10.1016/ J.ENVPOL.2018.11.034.
Zhang, Z., Arshad, A., Zhang, C., Hussain, S. & Li, W., 2020, Unprecedented Temporary Reduction in Global Air Pollution Associated with COVID-19 Forced Confinement: A Continental and City Scale Analysis, Remote Sens., 12, P. 2420. https://doi.org/10.3390/RS12152420.
Zhao, J., Deng, F., Cai, Y. & Chen, J., 2019, Long Short-Term Memory - Fully Connected (LSTM-FC) Neural Network for PM2.5 Concentration Prediction, Chemosphere, 220, PP. 486-492. https://doi.org/10.1016/ J.CHEMOSPHERE.2018.12.128.