تحلیل مدل هوشمند پایش تخلفات ساختمانی در مدیریت شهری (مطالعة موردی: محدوده و حریم کلان‌شهر مشهد)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری مدیریت بحران، شهرداری مشهد، مشهد

2 کارشناس ارشد جغرافیا و برنامه‌ریزی شهری، شهرداری مشهد، مشهد

3 کارشناس ارشد طراحی شهری، شهرداری مشهد، مشهد

4 دکتری جغرافیا و برنامه‌ریزی روستایی، دانشگاه فردوسی مشهد، مشهد

چکیده

با توجه به روند بی‌سابقه و رو به رشد جمعیت و گسترش شهری در دهه‏های اخیر، با افزایش نگران‌کنندة ساخت‏وسازها و به‌ویژه موارد غیرمجاز در محدودة شهری مواجه بوده‌ایم و این مسئله نظام مدیریت و برنامه‌ریزی شهری را تحت‌الشعاع قرار داده است؛ ازاین‌رو جلوگیری از ساخت‌وسازهای غیرمجاز شهری یکی از مهم‌ترین مشکلات مدیران شهری شمرده می‌شود. روش کنونی کنترل تخلفات ساختمانی شامل بازرسی‏های میدانی برمبنای دانش انسانی است که صرف هزینة گزاف مالی، زمانی و انسانی را می‌طلبد و ممکن است حتی به شناسایی‌نشدنِ به‌موقع تخلفات ساختمانی بینجامد. درهمین‌زمینه طرح روشی هوشمند و دقیق برای شناسایی تخلفات ساختمانی و هدفمندکردن جست‌وجوی گشت‌های نظارت بر ساخت‌وسازها بیش‌ازپیش مورد نیاز است. پژوهش حاضر، با این هدف، به‌دنبال بیان مدل راهبردی هوشمندی در پایش تخلفات است. این پژوهش ازنظر هدف، کاربردی و ازلحاظ روش، توصیفی و علّی است و داده‌های آن به‌روش کتابخانه‌ای و میدانی جمع‌آوری ‌شده است. در این تحقیق، از تصاویر ماهواره‌ای، تصاویر پهپاد، دوربین‌های نصب‌شده روی خودرو و AVL به‌منزلة ورودی‌های سیستم مانیتورینگ هوشمند استفاده شده است. نتایج این تحقیق بیان می‌کند، با استفاده از سیستم مانیتورینگ هوشمند، امکان پایش هوشمند ساخت‌وسازهای غیرقانونی ازطریق فنون پردازش تصاویر و داده‌های مورد نیاز، با کمترین حضور عامل انسانی و در زمانی کوتاه‌تر، وجود دارد. دقت کلی 94% و ضریب کاپای 71% برای طبقه‌بندی تصویر در این سیستم، صحت نتایج یادشده را تأیید می‌کند و نشان می‌دهد، در این روش، سرعت و دقت طبقه‌بندی تصاویر، شناسایی ساختمان‌های درحال تغییر و شناسایی ساخت‌وسازهای غیرقانونی به‌مراتب بیشتر از روش‌های فیزیکی و موجود است.

کلیدواژه‌ها


عنوان مقاله [English]

Presenting a Strategic Model of Intelligent Monitoring of Construction Violations in Urban Management (Case Study: Mashhad Metropolis Area and Privacy)

نویسندگان [English]

  • Mahdi Fahmideh Modami 1
  • Masoud Ayaz 2
  • Ahmad Alajeh Gardi 3
  • mahdi javanshiri 4
1 Ph.D. of Crisis Management, Mashhad Municipality, Mashhad
2 M.Sc. of Geography and Urban Planning, Mashhad Municipality, Mashhad
3 M.Sc. of Urban Design and Urban Planning, Mashhad Municipality, Mashhad
4 .D. of Geography and Rural Planning, Ferdowsi University of Mashhad, Mashhad
چکیده [English]

The dramatic increase in construction in recent decades has been accompanied by an increase in the number of construction violations in urbanized areas and has overshadowed the urban management and planning system, so preventing unauthorized urban construction is one of the main problems of city managers. The current method of controlling construction violations includes field inspections based on human knowledge, which in addition to the need to spend exorbitant financial, time and human resources, may lead to collusion between builders and municipal inspectors or even failure to identify construction violations in a timely manner. In this regard, providing an intelligent and accurate method for identifying construction violations and targeting the search for construction patrols is more than necessary. The aim of this study is to provide an intelligent strategic model in monitoring violations. The present research is applied in terms of purpose and descriptive and causal in terms of method and the data has been collected by library and field methods. The results of this study indicate that by using the intelligent monitoring system, it is possible to intelligently monitor illegal constructs by processing the required image and data techniques, with the least presence of human agents and in a shorter time. The overall accuracy of 94% and the kappa coefficient of 71% for image classification in this system confirm the accuracy of the above results. It shows that in this method, the speed and accuracy of image classification, identification of changing buildings and identification of illegal constructions are much higher than physical and existing methods.

کلیدواژه‌ها [English]

  • Intelligent monitoring system
  • Illegal constructions
  • Construction violations monitoring
  • UAV
  • Mashhad metropolis
Agheyisi, J.E., 2016, Evaluating the Conformity of Informal Land Subdivision with the Planning Law in Benin Metropolis, Land Use Policy, 59, PP. 602-612.
Ahmad, A., 2005, Change Detection in High Density Urban Area and Rural Area Using High Resolution Satellite Image, MSc. Thesis, Faculty of Civil Engineering, Atilim University, Ankara, Turkey.
 
Ahmed, A. & Dinye, R.D., 2011, Urbanisation and the Challenges of Development Controls in Ghana: A Case Study of Wa Township, Journal of Sustainable Development in Africa, 13(7), PP. 210-235.
Al-Hader, M., & Rodzi, A. (2009). The smart city infrastructure development & monitoring. Theoretical and Empirical Researches in Urban Management, 4(2 (11), 87-94.
Anabistani, A.A. & Kharazmi, A.A., 2018, Challenges and Opportunities Facing the Rural Settlements of Mashhad Metropolis, Mashhad: Vice President of Planning and Human Development of Mashhad Municipality.
Anuri, N.A. & Daryabari, S.J., 2017, Investigating the Management Issues of Tehran Metropolitan Area in Relation to the Current and Future Trend of Physical and Demographic Changes, Scientific and Research Quarterly of New Approaches in Human Geography, 10(2), PP. 215-238.
Asmat, A., Zamzami, S.Z. & Mansor, S., 2018, The Use of Multi-Sensor for Illegal Human Settlement Detection, Asian Journal of Environment-Behaviour Studies, 3(7), PP. 171-178.
August Consulting Engineers. (2021). Revision of the strategic-operational plan of Mashhad metropolitan area. Mashhad Municipality, Vice Chancellor of Architecture and Urban Development, Management of Southern Heights of Mashhad
Bayburt, S., Büyüksalih, G., Baz, I., Jacobsen, K. & Kersten, T., 2008, Detection of Changes in Istanbul Area with Medium and High Resolution Space Images, Int Arch Photogramm Remote Sens Spatial Inf Sci, 37, PP. 1607-12.
Benedek, C., Descombes, X. & Zerubia, J., 2010, August, Building Detection in a Single Remotely Sensed Image with a Point Process of Rectangles, In 2010 20th International Conference on Pattern Recognition (PP. 1417-1420), IEEE. Proc. The International Conference on Pattern Recognition (ICPR), Istanbul, Aug. 23-26, 2010, PP. 1417-1420.
Borchard, K. & Scholich, D., 2006, 60 Jahre Akademie für Raumforschung und Landesplanung, Raumforschung und Raumordnung, 64(6), PP. 498-511.
Borsekova, K. & Nijkamp, P., 2018, Smart Cities: A Challenge to Research and Policy Analysis, Cities, 78(xxxx), PP. 1-3. https://doi.org/10.1016/j.cities.2018.03.015.
Chen, D., Shang, S. & Wu, C., 2014, Shadow-Based Building Detection and Segmentation in High-Resolution Remote Sensing Image, Journal of Multimedia, 9(1), PP. 181-188.
Esmailpoor, N., Heravi, Z. & Heidari Hamane, E., 2019, Investigating the Causes of Building Breach in the Third District of Yazd, Motaleate Shahri, 8(31), PP. 17-30. doi: 10.34785/J011.2019.225.
EVET Consulting Engineers, 2018, Strategic-Operational Plan of Mashhad Metropolitan Area, Mashhad Municipality, Vice Chancellor of Architecture and Urban Development, Management of Southern Heights of Mashhad City.
Fahmedeh, M., 2019, Surveillance Cameras on the APN Platform to Monitor Construction Violations, Information Base of Mashhad Municipality, Available in: https://news. mashhad.ir/ fa/news/680153-.html.
Fahmedeh, M., 2021, Satellite Images in Monitoring Construction Violations, Information Base of Mashhad Municipality, Available in: https://news.mashhad.ir/fa/ news/721882.html.
Grubesic, T.H. & Nelson, J.R., 2020, Uavs and Urban Spatial Analysis, Springer International Publishing.
Hall, P. & Tewdwr-Jones, M., 2019, Urban and Regional Planning, Routledge.
Hermosilla, T., Ruiz, L.A., Recio, J.A. & Estornell, J., 2011, Evaluation of Automatic Building Detection Approaches Combining High Resolution Images and LiDAR Data, Remote Sensing, 3(6), PP. 1188-1210.
Jensen, O.B., 2016, New ‘Foucauldian Boomerangs’: Drones and Urban Sur-veillance, Surveillance & Society, 14(1), PP. 20-33.
Jimoh, B.A., Al-Hasan, A.Z., Imimole, W.O. & Ahmed, M.B., 2017, Contravention of Development Control Measures in Auchi, Edo State, Nigeria, Applied Science Reports, 20(2).
Jin, X. & Davis, C.H., 2005, Automated Building Extraction from High-Resolution Satellite Imagery in Urban Areas Using Structural, Contextual, and Spectral Information, EURASIP Journal on Advances in Signal Processing, 2005(14), PP. 1-11.
Karantzalos, K., Koutsourakis, P., Kalisperakis, I. & Grammatikopoulos, L., 2015, Model-Based Building Detection from Low-Cost Optical Sensors Onboard Unmanned Aerial Vehicles, International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 40.
Khalili Moghadam, N., 2015, Monitoring Construction Violations Using a Four-Dimensional Spatial Information System, Master's Thesis, Civil Engineering - Geographical Information System (GIS), University of Tehran, Iran.
Khodaparasti, M., Abedini, R., Sadeghi, M. & Najafgholizadeh, N., 2015, Urban Construction Control and Monitoring Strategies from the Point of View of Urban Management (Case Study: District 17 of Tehran, Urban Engineering, Civil, Architecture Conference, Qom. https://civilica.com/doc/ 523944/.
Kovacs, A. & Sziranyi, T., 2012, Orientation Based Building Outline Extraction in Aerial Images, ISPRS Annals of Photogram, Remote Sens. and Spatial Inf. Sci., I-7, PP. 141-146.
Li, B.S. & Liu, C.N., 2020, Research on Intelligent Recognition of Violation Based on Big Data of Urban Construction, The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, PP. 721-724.
Manouchehri, A., Abedini, A. & Hekmatnia, H., 2019, Investigation and Analysis of Construction Violations and Explaining the Key Affecting Factors (A Case Study of Yazd City), Urban Structure and Function Studies, 6(18), PP. 7-32. doi: 10.22080/ shahr.2019.2180.
Mazini, M., 2000, Examining the Structure of Urban Management in Iran (1st ed.), Ministry of Interior, Office of Urban Planning Studies.
Merrikh-Bayat, F., Bagheri Shouraki, S. & Merrikh-Bayat, F., 2014, Memristive Fuzzy Edge Detector, Journal of Real-Time Image Processing, 9(3), PP. 479-489.
Moghadam, N.K., Delavar, M.R. & Hanachee, P., 2015, Automatic Urban Illegal Building Detection Using Multi-Temporal Satellite Images and Geospatial Information Systems, The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(1), P. 387.
Njoku, E.G. (Ed.), 2014, Encyclopedia of Remote Sensing (P. 957), Springer New York.
Noor, N.M., Abdullah, A. & Hashim, M., 2018, Remote Sensing UAV/Drones And Its Applications for Urban Areas: A Review, In IOP Conference Series: Earth and Environmental Science (Vol. 169, No. 1, P. 012003). IOP Publishing.
Organization of Information Technology and Communications of Mashhad Municipality, 2020, Brief Report of the Project of Intelligent Monitoring of Constructions of Harim Mashhad by Drone, Mashhad Municipality: FAVA Organization.
Pang, S., Hu, X., Wang, Z. & Lu, Y., 2014, Object-Based Analysis of Airborne LiDAR Data for Building Change Detection, Remote Sensing, 6(11), PP. 10733-10749.
Peleshko, D., Rak, T., Noennig, J.R., Lytvyn, V. & Vysotska, V., 2020, Drone Monitoring System DROMOS of Urban Environmental Dynamics, In ITPM (PP. 178-193).
Razavi Khorasan Governorate. (2016). The latest national divisions of Mashhad city. Mashhad: Khorasan Razavi Governorate
Saramizadeh, M.F., 2012, The Complete Set of Rules and Regulations Related to the Municipality (Shiraz Region 8 Municipality), Shiraz: Shiraz Municipality.
Shaikhi, M. & Shabestar, M., 2018, Pathology of the Integrated Management of the Tehran Metropolitan Peri-urban Area, Quarterly Journals of Urban and Regional Development Planning, 3(4), PP. 1-34. doi: 10.22054/urdp.2019.42544.1128.
Shekhar, S., 2012, Detecting Slums from Quick Bird Data in Pune Using an Object Oriented Approach, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 39(8), PP. 519-524.
Singhal, S. & Radhika, S., 2014, Automatic Detection of Buildings from Aerial Images Using Color Invariant Features and Canny Edge Detection, International Journal of Engineering Trends and Technology (IJETT), 11(8), PP. 393-396.
Statistical Center of Iran. (2005). The results of the general population and housing census of Mashhad city, Tehran: Iran Statistics Center.
Statistical Center of Iran. (2015). The results of the general population and housing census of Mashhad city, Tehran: Iran Statistics Center.
Xu, S., Vosselman, G. & Oude Elberink, S., 2015, Detection and Classification of Changes in Buildings from Airborne Laser Scanning Data, Remote Sensing, 7(12), PP. 17051-17076.
Zhao, B., 2000, Integrated-Approach-Based Automatic Building Extraction, International Archives of Photogrammetry and Remote Sensing, 33(B3/2; PART 3), PP. 1026-1031.
Zhu, Q., Jiang, W. & Zhang, J., 2015, Feature Line Based Building Detection and Reconstruction from Oblique Airborne Imagery, International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences.