Akbari, D., Safari, A.R. & Homayouni, S., 2016, Improving Spectral-Spatial Classification of Supercritical Images by Using Spatial Information to Select Symbols, Scientific - Research Quarterly of Geographical Data (SEPEHR), 25(98), PP. 5-14.
Bengio, Y. & Ian, J., 2015, Goodfellow, and Aaron Courville. "Deep Learning", Nature, 521.7553, PP. 436-444.
Candemir, S., Jaeger, S., Palaniappan, K., Musco, J.P., Singh, R.K., Xue, Z. & McDonald, C.J., 2014, Lung Segmentation in Chest Radiographs Using Anatomical Atlases with Nonrigid Registration, IEEE Transactions on Medical Imaging, 33(2), PP. 577-590.
Camps-Valls, G., Gomez-Chova, L., Munoz-Mari, J., Vila-Frances, J. & Calpe-Maravilla, J., 2006, Composite Kernels for Hyperspectral Image Classification, IEEE Geoscience and Remote Sensing Letters, 3(1), PP. 93-97.
Camps-Valls, G., Shervashidze, N. & Borgwardt, K.M., 2010, Spatio-Spectral Remote Sensing Image Classification with Graph Kernels, IEEE Geoscience and Remote Sensing Letters, 7(4), PP. 741-745.
Chen, T. & Guestrin, C., 2016, Xgboost: A Scalable Tree Boosting System, In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining.
Dehghani, H., 2006, Classification of Distance Measurement Images with Large Dimensions and Limited Educational Examples, Ph.D. Thesis, Tarbiyat Modarres University, Department of Electronic Engineering, Tehran, Iran.
Domingos, P., 2012, A Few Useful Things to Know about Machine Learning, Communications of the ACM.
Du, P., Tan, K., Zhang, W. & Yan, Zh., 2008, ANN Classification of OMIS Hyperspectral Remotely Sensed Imagery: Experiments and Analysis, Congress on Image and Signal Processing, IEEE.
Fauvel, M., Chanussot, J., Benediktsson, J.A. & Sveinsson, J., 2007, Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Morphological Profiles, IEEE Transactions on Geoscience and Remote Sensing, 46(11), PP. 2012-2020.
Fukunaga, A. & Sber, G., 2008, Providing an Optimal Method Based on Deep Learning for Spectral Classification Images with High Resolution Spatial Resolution in Semi-Urban Areas, Journal of Geomatics Science and Technology, 9(2), PP. 151-170.
Gao, Y., Gao, F., Dong, J. & Li, H.C., 2020, SAR Image Change Detection Based on Multiscale Capsule Network, IEEE Geosci. Remote Sens. Lett., 18(3).
Ghaffari, O., Voldan-Zoj, M.J. & Mokhtarzadeh, M., 2016, Selecting the Band in Order to Optimize the Spectral Separation of Supercritical Images, The 1st National Conference on Geospatial Information Technology, K.N. Toosi University of Technology, Tehran, Iran.
Ghamisi, P., Plaza, J., Chen, Y., Li, J. & Plaza, A.J., 2017, Advanced Spectral Classifiers for Hyperspectral Images: A Review, IEEE Geoscience and Remote Sensing Magazine, 5(1), PP. 8-32.
Ghassemian, H., Keshavarz, A. & Landgrebe, D., 2003, Hyper-Spectral Image Processing and Analyses, Space Magazine, 1(3), PP. 32-41.
Gualtieri, J.A. & Chetri, S.R., 2000, Support Vector Machines for Classification of Hyperspectral Data, Proc. IGARSS, Honolulu, _HI, PP. 813-815.
Gualtieri, J.A., Chetri, S.R., Cromp, R.F. & Johnson, L.F., 1999, Support Vector Machines Classifiers as Applied to AVIRIS Data, In Summaries 8th JPL Airborne Earth Sience Workshop, JPL Pub., 99-17, PP. 217-227.
Hu, W., Huang, Y., Wei, L., Zhang, F. & Li, H., 2015, Deep Convolutional Neural Networks for Hyperspectral Image Classification, J. Sens, 2015, P. 258619.
Jimenez, L. & Landgrebe, D.A., 1999, Hyperspectral Data Analysis and Feature Reduction via Projection Pursuit, IEEE Trans. On Geoscience and Remote Sensing, 37(6), PP. 2653-2667.
Kaewpijit, S., Moigne, J.L., Ghazawi, T.E., 2003, Automatic Wavelet Spectral Analysis for Reduction of Hyperspectral Imagery, IEEE Trans. on Geoscience and Remote Sensing, 41(4), PP. 863-871.
Landgrebe, D.A., 2002, Hyperspectral Image Data Analysis, IEEE Signal Processing Magazine, 19(1), PP. 17-28.
LeCun, Y., Bengio, Y. & Hinton, G., 2015, Deep Learning, Nature, 521, PP. 436-444.
Lee, C. & Landgrebe, D.A., 1993, Feature Extraction Based on Decision Boundaries, IEEE Trans. on Pattern Analysis and Machine Intelligence, 15(4), PP. 388-400.
Li, H., 2018, Deep Learning for Natural Language Processing: Advantages and Challenges, National Science Review., 5(1), PP. 24-26.
Liyang, W., Yongyi, Y., Nishikawa, R.M., Wernick, M.N. & Edwards, A., 2005, Relevance Vector Machine for Automatic Detection of Clustered Micro Calcifications, IEEE Trans. Med. Imag., 24(10), PP. 1278-1285.
Luo, Y., Zou, J., Yao, C., Li, T. & Bai, G., 2018, HSI-CNN: A Novel Convolution Neural Network for Hyperspectral Image., arXiv 2018, arXiv:1802.10478.
Melgani, F. & Bruzzone, L., 2004, Classification of Hyperspectral Remote Sensing Images with Support Vector Machines, IEEE Transactions on Geoscience and Remote Sensing, 42(8), PP.1778-1790.
Paoletti, M.E., Plaza, J. & Plaza, A., 2018, A New Deep Convolutional Neural Network for Fast Hyperspectral Image Classification, ISPRS Journal of Photogrammetry and Remote Sensing, 145, PP. 120-147. doi:10.1016/ j.isprsjprs.2017.11.021.
Paoletti, M.E., Haut, J.M., Fernandez-Beltran, R., Plaza, J., Plaza, A., Jun, L. & Pla, F., 2019, Capsul Networks for Hyperspectral Image Classification, IEEE Transactions on Geoscience and Remote Sensing, 57(4), PP. 2145-2160. doi:10.1109/TGRS.2018.2871782.
Sabour, S., Frosst, N. & Hinton, G.E., 2017, Dynamic Routing between Capsules, In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4-9 December 2017, PP. 3859-3869.
Shahhoseeini, R., 2009, Evaluation of Support Vector Machines in the Classification of Hyperspectral Remote Sensing Data, Ms.c Thesis, University of Tehran, Tehran, Iran.
Wang, Y., Sun, A., Han, J., Liu, Y. & Zhu, X., 2018, Sentiment Analysis by Capsules, In Proceedings of the 2018 World Wide Web Conference on World Wide Web, Lyon, France, 23-27 April 2018; PP. 1165-1174.
Xu, J.L., Esquerre, C. & Sun, D.W., 2018. Methods for Performing Dimensionality Reduction in Hyperspectral Image Classification, Journal of Near Infrared Spectroscopy, 26(1), PP. 61-75.
Xu, Q., Wang, D.Y. & Luo, B., 2020, Faster Multiscale Capsule Network with Octave Convolution for Hyperspectral Image Classification, IEEE Geosci. Remote Sens. Lett, 18(2).
Xue, Z., You, D., Candemir, S., Jaeger, S., Antani, S., Long, L.R. & Thoma, G.R., 2015, Chest X-Ray Image View Classification, In Proceedings of the 28th International Symposium on Computer-Based Medical Systems (CBMS) (PP. 66-71), Brazil: Ribeião Preto.
Yu, Y., Gu, T., Guan, H., Li, D. & Jin, S., 2019, Vehicle Detection from High-Resolution Remote Sensing Imagery Using Convolutional Capsule Networks, IEEE Geosci. Remote Sens. Lett., 16, PP. 1894-1898.