Adhikari, K., Kheir, R., Greve, M., Bøcher, P., Malone, B., Minasny, B., McBratney, A. & Greve, M., 2013, High-Resolution 3-D Mapping of Soil Texture in Denmark, Soil Sci. Soc. Am. J., 77, PP. 860-876, doi.org/10.2136/sssaj2012.0275.
Amirian-Chakan, A., Minasny, B., Taghizadeh-Mehrjardi, R., Akbarifazli, R., Darvishpasand, Z. & Khordehbin, S., 2019, Some Practical Aspects of Predicting Texture Data in Digital Soil Mapping, Soil and Tillage Research, 194, P. 104289.
Bishop, M.P., Shroder Jr., J.F. & Colby, J.D., 2003, Remote Sensing and Geomorphometry for Studying Relief Production in High Mountains, Geomorphology, 55(1-4), PP. 345-361.
Bishop, M.P., James, L.A., Shroder Jr., J.F. & Walsh, S.J., 2012, Geospatial Technologies and Digital Geomorphological Mapping: Concepts, Issues and Research, Geomorphology, 137(1), PP. 5-26.
Blaga, L., 2012, Aspects Regarding the Significance of the Curvature Types and Values in the Studies of Geomorphometry Assisted by GIS, Anal. Univ. Oradea Ser. Geogr, 2012, PP. 327-337.
Bock, M., Boehner, J., Conrad, O., Koethe, R. & Ringeler, A., 2007,
Methods for Creating Functional Soil Databases and Applying Digital Soil Mapping with SAGA GIS, In: T. Hengl, P. Panagos, A. Jones, G. Toth, [Eds.]: Status and Prospect of Soil Information in South-Eastern Europe: Soil Databases, Projects and Applications, EUR 22646 EN Scientific and Technical Research Series, Office for Official Publications of the European Communities, Luxemburg, PP. 149-162,
http://eusoils.jrc.ec.europa.eu/ESDB_ Archive/ eusoils_docs/esb_rr/EUR22646EN.pdf.
Boettinger, J.L., Ramsey, R.D., Bodily, J.M., Cole, N.J., Kienast-Brown, S., Nield, S.J., Saunders, A.M. & Stum, A.K., 2008, Landsat Spectral Data for Digital Soil Mapping, In: A.E. Hartemink, A.B. McBratney, M.L. Mendonca-Santos (Eds.), Digital Soil Mapping with Limited Data, Springer Science, Australia, PP. 193-203.
Brenning, A., Bangs, D., Becker, M., Schratz, P. & Polakowski, F., 2018, Package ‘RSAGA’, The Comprehensive R Archive Network, https://CRAN.R-project.org/package= RSAGA.
Brungard, C.W., Boettinger, J.L., Duniway, M.C., Wills, S.A. & Edwards Jr., T.C., 2015, Machine Learning for Predicting Soil Classes in Three Semi-Arid Landscapes, Geoderma, 239-240, PP. 68-83, doi.org/ 10.1016/j.geoderma.2014.09.019.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V. & Boehner, J., 2015, System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, PP. 1991-2007, doi:10.5194/gmd-8-1991-2015.
Darestani Farahani, M., Akhondzadeh Henzaei, M. & Ahmadi Givi, F., 2016, Using a Neural Network Algorithm to Prepare a Water Surface Salinity Map from MODIS Satellite Images, Journal of Geographic Information Sepehr, 25(99), PP. 18-5.
Dharumarajan, S., Lalitha, M., Niranjana, K.V. & Hegde, R., 2022, Evaluation of Digital Soil Mapping Approach for Predicting Soil Fertility Parameters—A Case Study from Karnataka Plateau, India, Arabian Journal of Geosciences, 15(5), P. 386.
Forkuo, E.K. & Nketia, A.K., 2011, Digital Soil Mapping in GIS Environment for CropLand Suitability Analysis, International journal of Geomatics and Geosciences, 2(1), PP. 133-146.
Fu, W., Zhao, K., Tunney, H. & Zhang, C., 2013, Using GIS and Geostatistics to Optimize Soil Phosphorus and Magnesium Sampling in Temperate Grassland, Soil Science, 178(5), PP. 240-247, doi:10.1097/ss.0b013e 31829d463b.
Gallant, J.C. & Dowling, T.I., 2003, A Multi Resolution Index of Valley Bottom Flatness for Mapping Depositional Areas, Water Resources Research, 39, PP. 1347-1360.
Gao, B., Pan, Y., Chen, Z., Wu, F., Ren, X. & Hu, M., 2016, A Spatial Conditioned Latin Hypercube Sampling Method for Mapping Using Ancillary Data, Transactions in GIS, 20(5), PP. 735-754.
Godinho Silva, S.H., Owens, P.R., Silva, B.M., César de Oliveira, G., Duarte de Menezes, M., Pinto, L.C. & Curi, N., 2015, Evaluation of Conditioned Latin Hypercube Sampling as a Support for Soil Mapping and Spatial Variability of Soil Properties, Soil Science Society of America Journal, 79(2), PP. 603-611.
Guo, L., 2018, Exploring the Sensitivity of Soil Sample Numbers in Digital Soil Mapping and then Choosing a Suitable Soil Sampling Plan, Journal of Remote Sensing & GIS, 07, DOI:10.4172/2469-4134-c2-014.
Jochem, A., Wichmann, V. & Hofle, B., 2010, Large Area Point Cloud Based Solar Radiation Modeling, Hamburger Beiträge zur Physischen Geographie und Landschaft-sökologie, 21, P. 20.
Kaneda, H. & Chiba, T., 2019, Stereopaired Morphometric Protection Index Red Relief Image Maps (Stereo MPI‐RRIMs): Effective Visualization of High‐Resolution Digital Elevation Models for Interpreting and Mapping Small Tectonic Geomorphic Features, Bulletin of the Seismological Society of America, 109(1), PP. 99-109.
Köthe, R. & Bock, M., 2006, Development and Use in Practice of SAGA Modules for High Quality Analysis of Geodata, Free And Open Gis-Saga-Gis, 115, PP. 85-96.
Lacoste, M., Mulder, V., de Forges, A.R., Martin, M. & Arrouays, D., 2016, Evaluating Large-Extent Spatial Modeling Approaches: A Case Study for Soil Depth for France, Geoderma Regional, 7, PP. 137-152, doi.org/10.1016/j.geodrs.2016.02.006.
Li, J., Heap, A.D., Potter, A. & Daniell, J.J., 2011, Application of Machine Learning Methods to Spatial Interpolation of Environmental Variables, Environ. Modell. Softw., 26, PP. 1647-1659, doi.org/10.1016/ j.envsoft.2011.07.004.
Liess, M., Glaser, B. & Huwe, B., 2012, Uncertainty in the Spatial Prediction of Soil Texture. Comparison of Regression Tree and Random Forest Models, Geoderma, 170, PP. 70-79, doi.org/10.1016/ j.geoderma.2011.10.010.
Malone, B.P., Minansy, B. & Brungard, C., 2019, Some Methods to Improve the Utility of Conditioned Latin Hypercube Sampling, PeerJ, 7, P. e6451.
Maynard, J.J. & Levi, M.R., 2017, Hyper-Temporal Remote Sensing for Digital Soil Mapping: Characterizing Soil-Vegetation Response to Climatic Variability, Geoderma, 285, PP. 94-109, doi.org/10.1016/ j.geoderma.2016.09.024.
Metternicht, G.I. & Zinck, J.A., 2003, Remote Sensing of Soil Salinity: Potentials and Constraints, Remote Sensing of Environment, 85, PP. 1-20.
Mulder, V., Lacoste, M., de Forges, A.R. & Arrouays, D., 2016, Global Soil Map France: High-Resolution Spatial Modelling the Soils of France up to Two Meter Depth, Sci. Total Environ., 573, PP. 1352-1369, doi.org/ 10.1016/j.scitotenv.2016.07.066.
Ngu, N.H., Trung, N.H., Shinjo, H., Chotpantarat, S. & Thanh, N.N., 2025, Improving Spatial Prediction of Soil Organic Matter in Central Vietnam Using Bayesian-Enhanced Machine Learning and Environmental Covariates, Archives of Agronomy and Soil Science, 71(1), PP. 1-17.
Nield, S.J., Boettnger, J.L. & Ramsey, R.D., 2007, Digital Mapping Gypsic and Nitric Soil Areas Using Landsat ETM Data, Soil Science Society of America Journal, 71, PP. 245-252.
Nussbaum, M., Spiess, K., Baltensweiler, A., Grob, U., Keller, A., Greiner, L. & Papritz, A.J., 2018, Evaluation of Digital Soil Mapping Approaches with Large Sets of Environmental Covariates, Soil, 4(1), PP. 1-22.
Parmar, S., 2019, Morphometry Analysis Using SAGA GIS: A Case Study of Watershed–63 of Narmada River, Gujarat, India, Journal of Engineering Research and Application, (2).
Somarathna, P., Malone, B. & Minasny, B., 2016, Mapping Soil Organic Carbon Content over New South Wales, Australia Using Local Regression Kriging, Geoderma Regional, 7, PP. 38-48, doi.org/10.1016/ j.geodrs.2015.12.002.
Szatmári, G., Barta, K. & Pásztor, L., 2015, An Application of a Spatial Simulated Annealing Sampling Optimization Algorithm to Support Digital Soil Mapping, Hungarian Geographical Bulletin, 64(1), PP. 35-48.
Taghizadeh-Mehrjardi, R., 2015, Determining Spatial Sampling Pattern Using Different Methods (Case Study: Taft County), Agricultural Engineering (Agricultural Scientific Journal), 38(2), PP. 19-36.
Taghizadeh- Mehrjardi, R., Minasny, B., Sarmadian, F. & Malone, B.P., 2014, Digital Mapping of Soil Salinity in Ardakan Region, Central Iran, Geoderma, 213, PP. 15-28.
Taghizadeh-Mehrjardi, R., Nabiollahi, K. & Kerry, R., 2016, Digital Mapping of Soil Organic Carbon at Multiple Depths Using Different Data Mining Techniques in Baneh Region, Iran, Geoderma, 266, PP. 98-110, doi.org/10.1016/j.geoderma.2015.12.003.
Vaysse, K. & Lagacherie, P., 2015, Evaluating Digital Soil Mapping Approaches for Mapping GlobalSoilMap Soil Properties from Legacy Data in Languedoc-Roussillon (France), Geoderma Regional, 4, PP. 20-30, doi.org/10.1016/j.geodrs.2014.11.003.
Weber, D., Rüetschi, M., Small, D. & Ginzler, C., 2020, Grossflächige Klassifikation von Gebüsch Wald mit Fernerkundungsdaten, Schweizerische Zeitschrift fur Forstwesen, 171(2), PP. 51-59.
Were, K., Bui, D.T., Dick, Ø.B. & Singh, B.R., 2015,
A Comparative Assessment of Support Vector Regression, Artificial Neural Networks, and Random Forests for Predicting and Mapping Soil Organic Carbon Stocks Across an Afromontane Landscape, Ecol. Indic., 52, PP. 394-403,
doi.org/10.1016/j.ecolind.2014.12.028.
Zawawi, A.A., Shiba, M. & Jemali, N.J.N., 2014, Landform Classification for Site Evaluation and Forest Planning: Integration between Scientific Approach and Traditional Concept, Sains Malaysiana, 43(3), PP. 349-358.
Zeinali, M., Jafarzadeh, A.A., Shahbazi, F. & Ostan, Sh., 2016, Evaluation of Surface Soil Salinity Using Pixel-Based Method Based on TM Sensor Data (Case Study: Lands East of Khoy County- West Azerbaijan Province), Journal of Geographic Information Sepehr, 25(99), PP. 127-139.