Akbari, D., 2019,
Improved Neural Network Classification of Hyperspectral Imagery using Weighted Genetic Algorithm and Hierarchical Segmentation, IET image processing, 13, pp. 2169-2175. https://doi.org/
10.1049/iet-ipr.2018.5693
Bhattacharya, B.K., Green, R.O., Rao, S., Saxena, M., Sharma, S., Kumar, K.A., Srinivasulu, P., Sharma, S., Dhar, D. and Bandyopadhyay, S., 2019, An Overview of AVIRIS-NG Airborne Hyperspectral Science Campaign over India, Curr. Sci., 116, pp. 1082–1088. https://www.jstor.org/stable/27138000
Carvalho, O.A. and Meneses, P.R., 2002, Spectral Correlation Mapper (SCM): An Improvement on the Spectral Angle Mapper (SAM), Asa Norte, 70910-900, Brasília, DF, Brasil.
Chang, C.I., 2003, Hyperspectral Imaging: Techniques for spectral Detection and Classification, Orlando, FL: Kluwer Academic. https://doi.org/10.1007/978-1-4419-9170-6
Chang, C.I. and Chiang, S.S., 2002,
Anomaly Detection and Classification for Hyperspectral Imagery, IEEE Trans. Geosci. Remote Sens., 40, pp. 1314-1325. https://doi.org/
10.1109/TGRS.2002.800280
Chang, C.I., Heinz, D.C., 2000,
Constrained Subpixel Target Detection for Remotely Sensed Imagery, IEEE Trans. Geosci. Remote Sens., 38, pp. 1144-1059. https://doi.org/
10.1109/36.843007
Dos Reis Salles, R., Souza Filho, C.R., Cudahy, T., Vicente, L.E. and Monteiro, L.V.S., 2017,
Hyperspectral Remote Sensing Applied to Uranium Exploration: A Case Study at the Mary Kathleen Metamorphic-Hydrothermal U-REE Deposit, NW, Queensland, Australia, J. Geochem. Explor., 179, pp. 36–50.
https://doi.org/10.1016/j.gexplo.2016.07.002
Du, Y., Chang, C.I. and Ren, H.,
Chang, C.C.,
Jensen, J.O. and
D'Amico, F., 2004,
New Hyperspectral Discrimination Measure for Spectral Characterization,
Optical Engineering, 43, pp. 1777-1786. https://doi.org/
10.1117/1.1766301
Emami, H. and Afary, A., 2007, Subpixel Classification on the Hyperspectral Images for Accuracy Improvement of Classification Results, Dep. of Geodesy and Geomatic Eng, K.N. Toosi University of Technology, Tehran, Iran. https://civilica.com/doc/4132/
Freitas, S., Silva, H. and Almeida, J., 2018, Hyperspectral Imaging for Real-time Unmanned Aerial Vehicle Maritime Target Detection, J. Intell. Robot Syst., 90, pp. 551–570. https://doi.org/10.1007/s10846-017-0689-0
Freitas, S., Silva, H., Almeida J.M. and Silva, E., 2019,
Convolutional Neural Network Target Detection in Hyperspectral Imaging for Maritime Surveillance, Int. J. Adv. Robot. Syst., pp. 1-13. https://doi.org/
10.1177/1729881419842991
Frolov, D. and Smith, R.B., 1999,
Locally Adaptive Constrained Energy Minimization for AVIRIS Image, Eighth JPL Airborne Earth Science (AVIRS), 1.
http://www.microimages.com/papers
Homayouni, S. and Roux, M., 2005, Hyperspectral Image Analysis for Material Mapping using Spectral Matching, ISPRS04-Istanbul, GET, Telecom Paris, UMR 5141 LTCI, Department TSI, 46 rue Barrault, France.
Hou, Y., Zhang, Y., Yao, L., Liu, X. and Wang, F., 2016,
Mineral Target Detection based on MSCPE_BSE in Hyperspectral Image, In Proceedings of the 2016 IEEE Int. Geosci. Remote Sens. Symposium (IGARSS), Beijing, China, pp. 1614–1617. https://doi.org/
10.1109/IGARSS.2016.7729412
Jang, J.S.R., 1993,
ANFIS: Adaptive-Network-based Fuzzy Inference Systems, IEEE Trans. Syst. Man Cybern., 23, pp. 665-685. https://doi.org/
10.1109/21.256541
Jha, S.S. and Nidamanuri, R.R., 2020,
Gudalur Spectral Target Detection (GST-D): A New Benchmark Dataset and Engineered Material Target Detection in Multi-Platform Remote Sensing Data, Remote Sens., 12, pp. 2145.
https://doi.org/10.3390/rs12132145
Kanjir, U., Greidanus, H. and Oštir, K., 2018,
Vessel Detection and Classification from Space borne Optical Images: A Literature Survey, Remote Sens. Environ., 207, pp. 1–26.
https://doi.org/10.1016/j.rse.2017.12.033
Landgrebe, D., 1999,
Some Fundamentals and Methods for Hyperspectral Image Data Analysis, SPIE Int. Symp. On Biomedical Optics (Photonics West), San Jose CA, Proc. SPIE, 3603, pp. 104-113.
https://doi.org/10.1117/12.346731
Ren, S., He, K. and Girshick, R., 2017, Faster R-cnn: Towards Real Time Object Detection with Region Proposal Networks, IEEE Trans. Pattern Anal., 39, pp. 1137–1149. https://doi.org/10.48550/arXiv.1506.01497
Rosenfield, G.H., Fitzpatric-Lins, K., 1986, A Coefficient of Agreement as a Measure of Thematic Classification Accuracy, Photogrammetric Eng. Remote Sensing., 52, pp. 223-227.
Tarabalka, Y., Tilton, J.C., Benediktsson, J.A. and Chanussot, J.A., 2011,
Marker-Based Approach for the Automated Selection of a Single Segmentation from a Hierarchical Set of Image Segmentations, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens, 5, pp. 262-272. https://doi.org/
10.1109/JSTARS.2011.2173466
Tilton, J., 2003,
Analysis of hierarchically related image segmentations, in Proc. IEEE Workshop Adv. Tech. Anal. Remotely Sensed Data, pp. 60–69. https://doi.org/
10.1109/WARSD.2003.1295173
Tilton, J., 2009, RHSEG User’s Manual: Including the Core RHSEG Open Source Release, HSEGExtract, HSEGReader and HSEGViewer.
Van der Meer, F., 2006,
The Effectiveness of Spectral Similarity Measures for the Analysis of Hyperspectral Imagery, Int. J. Appl. Earth Observation Geoinformation., 8, pp. 3–17.
https://doi.org/10.1016/j.jag.2005.06.001
Yadav, D., Arora, M.K., Tiwari, K.C. and Ghosh, J.K., 2018,
Parameters A_ecting Target Detection in VNIR and SWIR Range, Egypt. J. Remote Sens. Space Sci., 21, pp. 325–333.
https://doi.org/10.1016/j.ejrs.2017.08.004
Zhang, X., Nansen, C. and Aryamanesh, N., 2015,
Importance of Spatial and Spectral Data Reduction in the Detection of Internal Defects in Food Products, Appl Spectrosc., 69, pp. 473–480. https://doi.org/
10.1366/14-07672