Alizadeh Rabiee, H., 2017, Remote Sensing (Principles and Application), Samt Organisation, 978-600-02-2449-3.
Bevis, M., Businger, S., Herring, T.A., Rocken, C., Anthes, R.A. & Ware, R.H., 1992,
GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System, J. Geophys. Res. Atmos., 97(D14), PP. 15787-1580,
https://doi.org/ 10.1029/92JD01517.
Campos-Ariaa, P., Esquivel-Hernández, G., Valverde-Calderón, J.F., Valverde Calderón, S., Moya-Zamora, J., Sánchez-Murillo, R. & Boll, J., 2019,
GPS Precipitable Water Vapor Estimations over Costa Rica: A Comparison against Atmospheric Sounding and Moderate Resolution Imaging Spectrometer (MODIS), Clim., 7(63),
https:// doi.org/10.3390/cli7050063.
Colman, R., 2003, A Comparison of Climate Feedbacks in General Circulation Models, Clim. Dyn., 20(7), PP. 865-873, https://doi.org/10.1007/s00382-003-0310-z.
De Haan, S., Barlag, S., Baltink, H.K., Debie, F. & Van Der Marel, H., 2004,
Synergetic Use of GPS Water Vapor and Meteosat Images for Synoptic Weather Forecasting, J. Appl. Meteorol., 43(3), PP. 514-518,
https:// doi.org/10.1175/1520-0450(2004)043 <0514:SUOGWV>2.0.CO;2.
Epeloa J. & Meza, A., 2018, Total Column Water Vapor Estimation over Land Using Radiometer Data from SAC-D/Aquarius, Adv. Space Res., 61(4), PP. 1025-1034, https://doi.org/10.1016/j.asr.2017.11.023.
Fragkos, K., Antonescu, B., Giles, D.M., Ene, D., Boldeanu, M., Efstathiou, G.A., Belegante, L. & Nicolae, D., 2019,
Assessment of the Total Precipitable Water from a Sun Photometer, Microwave Radiometer and Radiosondes at a Continental Site in Southeastern Europe, Atmos. Meas. Tech., 12(3), PP. 1979-1997,
https://doi.org/10.5194/amt-12-1979-2019.
French, A., Norman, J. & Anderson, M., 2003,
A Simple and Fast Atmospheric Correction for Spaceborne Remote Sensing of Surface Temperature, Remote Sens. Environ., 87(2-3), PP. 326-333,
https://doi.org/10.1016/ j.rse.2003.08.001.
Gong, S., Chen, W., Zhang, C., Wu, P. & Han, J., 2020,
Intercomparisons of Precipitable Water Vapour Derived from Radiosonde, GPS and Sunphotometer Observations, Geod. Vestn., 64(4), PP. 562-577, 2020,
https://doi.org/10.15292/geodetski-vestnik.2020.04.562-577.
Julien, Y., Sobrino, J., Mattar, C. & Jiménez-Muñoz, J.C., 2015,
Near-Real-Time Estimation of Water Vapor Column from MSG-SEVIRI Thermal Infrared Bands: Implications for Land Surface Temperature Retrieval, IEEE Trans. Geosci. Remote Sens., 53(8), PP. 4231-4237, https://doi.org/
10.1109/ TGRS.2015.2393378.
Kaufman, Y.J. & Gao, B.C., 1992,
Remote Sensing of Water Vapor in the Near IR from EOS/MODIS, IEEE Trans. Geosci. Remote Sens., 30(5), PP. 871-884, https://doi.org/
10.1109/36.175321.
Kern, A., Bartholy, J., Borbás, E.E., Barcza, Z., Pongrácz, R. & Ferencz, C., 2008,
Estimation of Vertically Integrated Water Vapor in Hungary Using MODIS Imagery, Adv. Space Res., 41(11), PP. 1933-1945,
https://doi.org/10.1016/j.asr.2007.06.048.
Khouni, I., Louhichi, G. & Ghrabi, A., 2018, Use of GIS
Based Inverse Distance Weighted Interpolation to Assess Surface Water Quality: Case of Wadi El Bey, Tunisia, Environ. Technol. Innov., 24(101892),
https://doi.org/10.1016/j.eti.2021.101892.
Li, X. & Long, D., 2020,
An Improvement in Accuracy and Spatiotemporal Continuity of the MODIS Precipitable Water Vapor Product Based on a Data Fusion Approach, Remote Sens. Environ., 248(111966),
https://doi.org/10.1016/j.rse. 2020.111966.
Moradizadeh, M., Momeni, M. & Saradjian, M.R., 2014,
Estimation and Validation of Atmospheric Water Vapor Content Using a MODIS NIR Band Ratio Technique Based on AIRS Water Vapor Products, Arab. J. Geosci., 7(5), PP. 1891-1897, https://doi.org/
10.1007/s12517-013-0828-2.
Rockström, M., Gordon, L.,
Folke, C., Falkenmark, M. & Engwall, M., 1999,
Linkages among Water Vapor Flows, Food Production, and Terrestrial Ecosystem Services, Ecol. Soc., 3(2), https://doi.org/
10.5751/ES-00142-030205.
Román, R., Antón, M., Cachorro, V.E., Loyola, D., Ortiz de Galisteo, J.P., de Frutos, A. & Romero-Campos, P.M., 2015,
Comparison of Total Water Vapor Column from GOME-2 on MetOp-A against Ground-Based GPS Measurements at the Iberian Peninsula, Sci. Total Environ., 533(317-328),
https://doi.org/ 10.1016/j.scitotenv. 2015.06.124.
Schrijver, H., Gloudemans, A., Frankenberg, C. & Aben, I., 2009,
Water Vapour Total Columns from SCIAMACHY Spectra in the 2.36µm Window, Atmos. Meas. Tech., 2, PP. 561-571,
https://doi.org/10.5194/amt-2-561-2009.
Sheil, D., 2018,
Forests, Atmospheric Water and an Uncertain Future: The New Biology of the Global Water Cycle, For. Ecosyst., 5(19), https://doi.org/
10.1186/ s40663-018-0138-y.
Sobrino, J., 2003,
Zonas metropolitanas de México en 2000: Conformación territorial y movilidad de la población ocupada, Estud. Demogr. Urbanos Col. Mex., 18(3), PP. 461-507,
https://doi.org/10.24201/ edu.v18i3.1156.
Sobrino, J., El Kharraz, J. & Li, J.L., 2003,
Surface Temperature and Water Vapour Retrieval from MODIS Data, Int. J. Remote Sens., 24(24), PP. 5161-5182,
https://doi.org/ 10.1080/0143116031000102502.
Stum, J., Sicard, P., Carrere, L. & Lambin, J., 2011,
Using Objective Analysis of Scanning Radiometer Measurements to Compute the Water Vapor Path Delay for Altimetry, IEEE Trans. Geosci. Remote Sens., 49(9), PP. 3211-3224, https://doi.org/
10.1109/TGRS.2011.2104967.
Wan, Z., Zhang, Y., Zhang, Q. & Li, Z.L., 2002,
Validation of the Land-Surface Temperature Products Retrieved from TERRA Moderate Resolution Imaging Spectroradiometer Data, Remote Sens. Environ., 83(1-2), PP. 163-180,
https://doi.org/ 10.1016/S0034-4257(02)00093-7.
Wolfe, D.E. & Gutman, S.I., 2000,
Developing an Operational, Surface-Based, GPS, Water Vapor Observing System for NOAA, Network Design and Results, J. Atmos. Ocean Tech., 17(4), PP. 426-440,
https://doi.org/10.1175/1520-0426(2000)017<0426:DAOSBG>2.0.CO;2.
Xu, J. & Liu, Z., 2021,
The First Validation of Sentinel-3 OLCI Integrated Water Vapor Products Using Reference GPS Data in Mainland China, IEEE Trans. Geosci. Remote Sens., 60, PP. 1-17, https://doi.org/
10.1109/TGRS.2021.3099168.
Zhao, Y. & Zhou, T., 2020,
Asian Water Tower Evinced in Total Column Water Vapor: A Comparison among Multiple Satellite and Reanalysis Data Sets, Clim. Dyn., 4(1-2), PP. 231-245 ,
https://doi.org/10.1007/s00382-019-04999-4.