Allen, R. G., Morton, C., Kamble, B., Kilic, A., Huntington, J., Thau, D., . . . Robison, C. (2015, November). EEFlux: A Landsat-based Evapotranspiration mapping tool on the Google Earth Engine.
2015 ASABE / IA Irrigation Symposium: Emerging Technologies for Sustainable Irrigation - A Tribute to the Career of Terry Howell, Sr. Conference Proceedings. American Society of Agricultural and Biological Engineers. doi:10.13031/irrig.20152143511
Allen, R. G., Pereira, L. S., Raes, D., Smith, M., & others. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300, D05109.
|
Allen, R. G., Morton, C., Kamble, B., Kilic, A., Huntington, J., Thau, D., . . . Robison, C. (2015, November).
|
Allen, R. G., Tasumi, M., & Trezza, R. (2007, August). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model. Journal of Irrigation and Drainage Engineering, 133, 380–394. doi:10.1061/(asce)0733-9437(2007)133:4(380)
|
Allen, R. G., Tasumi, M., Morse, A., Trezza, R., Wright, J. L., Bastiaanssen, W., . . . Robison, C. W. (2007, August). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Applications. Journal of Irrigation and Drainage Engineering, 133, 395–406. doi:10.1061/(asce)0733-9437(2007)133:4(395)
|
Allen, R. G., Walter, I. A., Elliott, R., Howell, R., Itenfisu, D., & Jensen, M. (2005). RL Snyder, the ASCE standardized reference evapotranspiration equation. Environmental and Water Resources Institute of the American Society of Civil Engineers, 57.
|
Bastiaanssen, W. G. (2000, March). SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology, 229, 87–100. doi:10.1016/s0022-1694(99)00202-4
|
Bastiaanssen, W. G., Pelgrum, H., Wang, J., Ma, Y., Moreno, J. F., Roerink, G. J., & van der Wal, T. (1998, December). A remote sensing surface energy balance algorithm for land (SEBAL). Journal of Hydrology, 212–213, 213–229. doi:10.1016/s0022-1694(98)00254-6
|
Bhattarai, N., Quackenbush, L. J., Im, J., & Shaw, S. B. (2017, July). A new optimized algorithm for automating endmember pixel selection in the SEBAL and METRIC models. Remote Sensing of Environment, 196, 178–192. doi:10.1016/j.rse.2017.05.009
|
Brutsaert, W., & Sugita, M. (1992, November). Application of self‐preservation in the diurnal evolution of the surface energy budget to determine daily evaporation. Journal of Geophysical Research: Atmospheres, 97, 18377–18382. doi:10.1029/92jd00255
|
Calzadilla, A., Rehdanz, K., Betts, R., Falloon, P., Wiltshire, A., & Tol, R. S. (2013, July). Climate change impacts on global agriculture. Climatic Change, 120, 357–374. doi:10.1007/s10584-013-0822-4
|
Chakraborty, S., & Newton, A. C. (2011, January). Climate change, plant diseases and food security: an overview. Plant Pathology, 60, 2–14. doi:10.1111/j.1365-3059.2010.02411.x
|
Crago, R. D. (1996, May). Conservation and variability of the evaporative fraction during the daytime. Journal of Hydrology, 180, 173–194. doi:10.1016/0022-1694(95)02903-6
|
Dang, C., Liu, Y., Yue, H., Qian, J., & Zhu, R. (2020, October). Autumn Crop Yield Prediction using Data-Driven Approaches:- Support Vector Machines, Random Forest, and Deep Neural Network Methods. Canadian Journal of Remote Sensing, 47, 162–181. doi:10.1080/07038992.2020.1833186
|
Derakhshandeh, M., & Tombul, M. (2021, November). Calibration of METRIC Modeling for Evapotranspiration Estimation Using Landsat 8 Imagery Data. Water Resources Management, 36, 315–339. doi:10.1007/s11269-021-03029-5
|
Eswar, R., Sekhar, M., & Bhattacharya, B. K. (2017, December). Comparison of three remote sensing based models for the estimation of latent heat flux over India. Hydrological Sciences Journal, 62, 2705–2719. doi:10.1080/02626667.2017.1404067
|
Farah, H. O. (2001). Estimation of regional evaporation using a detailed agro-hydrological model. Journal of Hydrology, 229, 50–58.
|
Farah, H. O., Bastiaanssen, W. G., & Feddes, R. A. (2004, May). Evaluation of the temporal variability of the evaporative fraction in a tropical watershed. International Journal of Applied Earth Observation and Geoinformation, 5, 129–140. doi:10.1016/j.jag.2004.01.003
|
Fitzgerald, R. W., & Lees, B. G. (1994, March). Assessing the classification accuracy of multisource remote sensing data. Remote Sensing of Environment, 47, 362–368. doi:10.1016/0034-4257(94)90103-1
|
Ghaderi, A., Dasineh, M., Shokri, M., & Abraham, J. (2020, June). Estimation of Actual Evapotranspiration Using the Remote Sensing Method and SEBAL Algorithm: A Case Study in Ein Khosh Plain, Iran. Hydrology, 7, 36. doi:10.3390/hydrology7020036
|
Hodgson, M. E., Li, X., & Cheng, Y. (2004, December). A Parameterization Model for Transportation Feature Extraction. Photogrammetric Engineering & Remote Sensing, 70, 1399–1404. doi:10.14358/pers.70.12.1399
|
Im, J., & Hodgson, M. E. (2009, July). Characteristics of Search Spaces for Identifying Optimum Thresholds in Change Detection Studies. GIScience & Remote Sensing, 46, 249–272. doi:10.2747/1548-1603.46.3.249
|
Jawad, L. A., & Mohamed, H. A. (2020). Integrative Use of Penman-Monteith Equation with Remote Sensing and Geographical Information System Techniques to Estimate Evapotranspiration Vriances in Iraq. The Iraqi Journal of Agricultural Science, 51, 530–541.
|
Kamali, M. I., & Nazari, R. (2018, October). Determination of maize water requirement using remote sensing data and SEBAL algorithm. Agricultural Water Management, 209, 197–205. doi:10.1016/j.agwat.2018.07.035
|
Khatibi, A., & Krauter, S. (2021, February). Validation and Performance of Satellite Meteorological Dataset MERRA-2 for Solar and Wind Applications. Energies, 14, 882. doi:10.3390/en14040882
|
Knipper, K. R., Kustas, W. P., Anderson, M. C., Alfieri, J. G., Prueger, J. H., Hain, C. R., . . . Sanchez, L. (2018, October). Evapotranspiration estimates derived using thermal-based satellite remote sensing and data fusion for irrigation management in California vineyards. Irrigation Science, 37, 431–449. doi:10.1007/s00271-018-0591-y
|
Kumar, L., & Mutanga, O. (2018, September). Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sensing, 10, 1509. doi:10.3390/rs10101509
|
Laipelt, L., Henrique Bloedow Kayser, R., Santos Fleischmann, A., Ruhoff, A., Bastiaanssen, W., Erickson, T. A., & Melton, F. (2021, August). Long-term monitoring of evapotranspiration using the SEBAL algorithm and Google Earth Engine cloud computing. ISPRS Journal of Photogrammetry and Remote Sensing, 178, 81–96. doi:10.1016/j.isprsjprs.2021.05.018
|
Mondal, I., Thakur, S., De, A., & De, T. K. (2022, March). Application of the METRIC model for mapping evapotranspiration over the Sundarban Biosphere Reserve, India. Ecological Indicators, 136, 108553. doi:10.1016/j.ecolind.2022.108553
|
Mountrakis, G., Im, J., & Ogole, C. (2011, May). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 247–259. doi:10.1016/j.isprsjprs.2010.11.001
|
Mutanga, O., & Kumar, L. (2019, March). Google Earth Engine Applications. Remote Sensing, 11, 591. doi:10.3390/rs11050591
|
Nisa, Z., Khan, M. S., Govind, A., Marchetti, M., Lasserre, B., Magliulo, E., & Manco, A. (2021, February). Evaluation of SEBS, METRIC-EEFlux, and QWaterModel Actual Evapotranspiration for a Mediterranean Cropping System in Southern Italy. Agronomy, 11, 345. doi:10.3390/agronomy11020345
|
Norman, J. M., Kustas, W. P., & Humes, K. S. (1995, December). Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agricultural and Forest Meteorology, 77, 263–293. doi:10.1016/0168-1923(95)02265-y
|
Ramírez-Cuesta, J. M., Allen, R. G., Intrigliolo, D. S., Kilic, A., Robison, C. W., Trezza, R., . . . Lorite, I. J. (2020, September). METRIC-GIS: An advanced energy balance model for computing crop evapotranspiration in a GIS environment. Environmental Modelling & Software, 131, 104770. doi:10.1016/j.envsoft.2020.104770
|
Ramírez-Cuesta, J. M., Allen, R. G., Zarco-Tejada, P. J., Kilic, A., Santos, C., & Lorite, I. J. (2019, February). Impact of the spatial resolution on the energy balance components on an open-canopy olive orchard. International Journal of Applied Earth Observation and Geoinformation, 74, 88–102. doi:10.1016/j.jag.2018.09.001
|
azagui, A., Abdeladim, K., Bouchouicha, K., Bachari, N., Semaoui, S., & Hadj Arab, A. (2021, June). A new approach to forecast solar irradiances using WRF and libRadtran models, validated with MERRA-2 reanalysis data and pyranometer measures. Solar Energy, 221, 148–161. doi:10.1016/j.solener.2021.04.024
|
Roerink, G. J., Su, Z., & Menenti, M. (2000, January). S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25, 147–157. doi:10.1016/s1464-1909(99)00128-8
|
Saha, S. K., Ahmmed, R., & Jahan, N. (2022). Actual Evapotranspiration Estimation Using Remote Sensing: Comparison of Sebal and Metric Models. In Water Management: A View from Multidisciplinary Perspectives (pp. 365–383). Springer International Publishing. doi:10.1007/978-3-030-95722-3_18
|
Santos, C., Lorite, I. J., Tasumi, M., Allen, R. G., & Fereres, E. (2007, October). Integrating satellite-based evapotranspiration with simulation models for irrigation management at the scheme level. Irrigation Science, 26, 277–288. doi:10.1007/s00271-007-0093-9
|
Senay, G., Budde, M., Verdin, J., & Melesse, A. (2007, June). A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields. Sensors, 7, 979–1000. doi:10.3390/s7060979
|
Shamloo, N., Taghi Sattari, M., Apaydin, H., Valizadeh Kamran, K., & Prasad, R. (2021, August). Evapotranspiration estimation using SEBAL algorithm integrated with remote sensing and experimental methods. International Journal of Digital Earth, 14, 1638–1658. doi:10.1080/17538947.2021.1962996
|
Sheykhmousa, M., Mahdianpari, M., Ghanbari, H., Mohammadimanesh, F., Ghamisi, P., & Homayouni, S. (2020). Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 6308–6325. doi:10.1109/jstars.2020.3026724
|
Sobrino, J. A., Souza da Rocha, N., Skoković, D., Suélen Käfer, P., López-Urrea, R., Jiménez-Muñoz, J. C., & Alves Rolim, S. B. (2021, September). Evapotranspiration Estimation with the S-SEBI Method from Landsat 8 Data against Lysimeter Measurements at the Barrax Site, Spain. Remote Sensing, 13, 3686. doi:10.3390/rs13183686
|
Su, Z. (2002, February). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6, 85–100. doi:10.5194/hess-6-85-2002
|
Sun, Z., Wei, B., Su, W., Shen, W., Wang, C., You, D., & Liu, Z. (2011, August). Evapotranspiration estimation based on the SEBAL model in the Nansi Lake Wetland of China. Mathematical and Computer Modelling, 54, 1086–1092. doi:10.1016/j.mcm.2010.11.039
|
Tasumi, M. (2003). Progress in operational estimation of regional evapotranspiration using satellite imagery. University of Idaho.
|
Tasumi, M., Trezza, R., Allen, R. G., & Wright, J. L. (2005, November). Operational aspects of satellite-based energy balance models for irrigated crops in the semi-arid U.S. Irrigation and Drainage Systems, 19, 355–376. doi:10.1007/s10795-005-8138-9
|
Thorp, K. R., Marek, G. W., DeJonge, K. C., Evett, S. R., & Lascano, R. J. (2019, September). Novel methodology to evaluate and compare evapotranspiration algorithms in an agroecosystem model. Environmental Modelling & Software, 119, 214–227. doi:10.1016/j.envsoft.2019.06.007
|
Tian, D., Asadi, P., Medina, H., Ortiz, B., & Kesikka, I. (2020, March). A Climate Smart Framework for Forecasting Field-level Potential Evapotranspiration and Irrigation Requirement with Numerical Weather Predictions and Satellite Remote Sensing. doi:10.5194/egusphere-egu2020-11756
|
Wagle, P., Bhattarai, N., Gowda, P. H., & Kakani, V. G. (2017, June). Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum. ISPRS Journal of Photogrammetry and Remote Sensing, 128, 192–203. doi:10.1016/j.isprsjprs.2017.03.022
|
Wang, J., Li, H., & Lu, H. (2021, December). An estimation of the evapotranspiration of typical steppe areas using Landsat images and the METRIC model. Journal of Water and Climate Change, 13, 926–942. doi:10.2166/wcc.2021.432
|
Wickham, J. D., Stehman, S. V., Gass, L., Dewitz, J., Fry, J. A., & Wade, T. G. (2013, March). Accuracy assessment of NLCD 2006 land cover and impervious surface. Remote Sensing of Environment, 130, 294–304. doi:10.1016/j.rse.2012.12.001
|
Zagajewski, B., Kluczek, M., Raczko, E., Njegovec, A., Dabija, A., & Kycko, M. (2021, July). Comparison of Random Forest, Support Vector Machines, and Neural Networks for Post-Disaster Forest Species Mapping of the Krkonoše/Karkonosze Transboundary Biosphere Reserve. Remote Sensing, 13, 2581. doi:10.3390/rs13132581
|
Zhang, H., Anderson, R. G., & Wang, D. (2015, August). Satellite-based crop coefficient and regional water use estimates for Hawaiian sugarcane. Field Crops Research, 180, 143–154. doi:10.1016/j.fcr.2015.05.023
|