Arabacı, D. & Kuşçu Şimşek, Ç., 2023, Prediction of Climatic Changes Caused by Land Use Changes in Urban Area Using Artificial Neural Networks, Theoretical and Applied Climatology, 152(2), PP. 265-279, https://doi.org/10.1007/s00704-023-04386-4.
Breiman, L., 2001, Random Forests, Machine Learning, 45, PP. 5-32, https://doi.org/10.1023/A:1010933404324.
Calderón-Loor, M., Hadjikakou, M. & Bryan, B.A., 2021, High-Resolution wall-to-Wall Land-Cover Mapping and Land Change Assessment for Australia from 1985 to 2015, Remote Sensing of Environment, 252, PP. 112148-112163, https://doi.org/10.1016/j.rse.2020.112148.
Chaaban, F., El Khattabi, J. & Darwishe, H., 2022, Accuracy Assessment of ESA WorldCover 2020 and ESRI 2020 Land Cover Maps for a Region in Syria, Journal of Geovisualization and Spatial Analysis, 6(2), PP. 31-49, https://doi.org/10.1007/s41651-022-00126-w.
Chen, Q., Zhong, C., Jing, C., Li, Y., Cao, B. & Cheng, Q., 2021, Rapid Mapping and Annual Dynamic Evaluation of Quality of Urban Green Spaces on Google Earth Engine, ISPRS International Journal of Geo-Information, 10(10), PP. 670-699, https://doi.org/10.3390/ijgi10100670.
Congalton, R.G., Gu, J., Yadav, K., Thenkabail, P. & Ozdogan, M., 2014, Global Land Cover Mapping: A Review and Uncertainty Analysis, Remote Sensing, 6(12), PP. 12070-12093, https://doi.org/10.3390/rs61212070.
Ebrahimy, H., Mirbagheri, B., Matkan, A.A. & Azadbakht, M., 2021, Per-Pixel Land Cover Accuracy Prediction: A Random Forest-Based Method with Limited Reference Sample Data, ISPRS Journal of Photogrammetry and Remote Sensing, 172, PP. 17-27, https://doi.org/10.1016/j.isprsjprs.2020.11.024.
Feizizadeh, B., Lakes, T., Omarzadeh, D., Sharifi, A., Blaschke, T. & Karimzadeh, S., 2022, Scenario-Based Analysis of the Impacts of Lake Drying on Food Production in the Lake Urmia Basin of Northern Iran, Scientific reports, 12(1), PP. 6237-6253, https://doi.org/10.1038/s41598-022-10159-2.
Fonji, S.F. & Taff, G.N., 2014, Using Satellite Data to Monitor Land-Use Land-Cover Change in North-Eastern Latvia, Springerplus, 3, PP. 1-15, https://doi.org/10.1186/2193-1801-3-61.
Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A. & Huang, X., 2010, MODIS Collection 5 Global Land Cover: Algorithm Refinements and Characterization of New Datasets, Remote Sensing of Environment, 114(1), PP. 168-182, https://doi.org/10.1016/j.rse.2009.08.016.
Fritz, S., See, L., Perger, C., McCallum, I., Schill, C., Schepaschenko, D. et al., 2017, A Global Dataset of Crowdsourced Land Cover and Land Use Reference Data, Scientific Data, 4(1), PP. 1-8, https://doi.org/10.1038/sdata.2017.75.
Ghorbanian, A., Kakooei, M., Amani, M., Mahdavi, S., Mohammadzadeh, A. & Hasanlou, M., 2020, Improved Land Cover Map of Iran Using Sentinel Imagery within Google Earth Engine and a Novel Automatic Workflow for Land Cover Classification Using Migrated Training Samples, ISPRS Journal of Photogrammetry and Remote Sensing, 167, PP. 276-288, https://doi.org/10.1016/j.isprsjprs.2020.07.013.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D. & Moore, R., 2017, Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone, Remote Sensing of Environment, 202, PP. 18-27, https://doi.org/10.1016/j.rse.2017.06.031.
Huang, H., Wang, J., Liu, C., Liang, L., Li, C. & Gong, P., 2020, The Migration of Training Samples towards Dynamic Global Land Cover Mapping, ISPRS Journal of Photogrammetry and Remote Sensing, 161, PP. 27-36, https://doi.org/10.1016/j.isprsjprs.2020.01.010.
Li, C., Ma, Z., Wang, L., Yu, W., Tan, D., Gao, B. et al., 2021, Improving the Accuracy of Land Cover Mapping by Distributing Training Samples, Remote Sensing, 13(22), PP. 4594-4607, https://doi.org/10.3390/rs13224594.
Li, J., Wang, J., Zhang, J., Liu, C., He, S. & Liu, L., 2022, Growing-Season Vegetation Coverage Patterns and Driving Factors in the China-Myanmar Economic Corridor Based on Google Earth Engine and Geographic Detector, Ecological Indicators, 136, PP. 108620-108635, https://doi.org/10.1016/j.ecolind.2022.108620.
Lu, D., Mausel, P., Brondizio, E. & Moran, E., 2004, Change Detection Techniques, International Journal of Remote Sensing, 25(12), PP. 2365-2401, https://doi.org/10.1080/0143116031000139863.
Murray, N.J., Worthington, T.A., Bunting, P., Duce, S., Hagger, V., Lovelock, C.E. et al., 2022, High-Resolution Mapping of Losses and Gains of Earth’s Tidal Wetlands, Science, 376(6594), PP. 744-749, https://doi.org/10.1126/science.abm9583.
Naboureh, A., Li, A., Ebrahimy, H., Bian, J., Azadbakht, M., Amani, M. et al., 2021, Assessing the Effects of Irrigated Agricultural Expansions on Lake Urmia Using Multi-Decadal Landsat Imagery and a Sample Migration Technique within Google Earth Engine, International Journal of Applied Earth Observation and Geoinformation, 105, PP. 102607-102618, https://doi.org/10.1016/j.jag.2021.102607.
Nedd, R., Light, K., Owens, M., James, N., Johnson, E. & Anandhi, A., 2021, A Synthesis of Land Use/Land Cover Studies: Definitions, Classification Systems, Meta-Studies, Challenges and Knowledge Gaps on a Global Landscape, Land, 10(9), PP. 994-1024, https://doi.org/10.3390/land10090994.
Nian, Y., He, Z., Zhang, W. & Chen, L., 2023, Land Cover Changes of the Qilian Mountain National Park in Northwest China Based on Phenological Features and Sample Migration from 1990 to 2020, Remote Sensing, 15(4), PP. 1074-1097, https://doi.org/10.3390/rs15041074.
Olofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, C.E. & Wulder, M.A., 2014, Good Practices for Estimating Area and Assessing Accuracy of Land Change, Remote Sensing of Environment, 148, PP. 42-57, https://doi.org/10.1016/j.rse.2014.02.015.
Padial-Iglesias, M., Serra, P., Ninyerola, M. & Pons, X., 2021, A Framework of Filtering Rules over Ground Truth Samples to Achieve Higher Accuracy in Land Cover Maps, Remote Sensing, 13(14), PP. 2662-2698, https://doi.org/10.3390/rs13142662.
Patra, S., Ghosh, S. & Ghosh, A., 2011, Histogram Thresholding for Unsupervised Change Detection of Remote Sensing Images, International Journal of Remote Sensing, 32(21), PP. 6071-6089, https://doi.org/10.1080/01431161.2010.507793.
Phan, D.C., Trung, T.H., Truong, V.T., Sasagawa, T., Vu, T.P.T., Bui, D.T. et al., 2021, First Comprehensive Quantification of Annual Land Use/Cover from 1990 to 2020 across Mainland Vietnam, Scientific Reports, 11(1), PP. 1-20, https://doi.org/10.1038/s41598-021-89034-5.
Radoux, J., Lamarche, C., Van Bogaert, E., Bontemps, S., Brockmann, C. & Defourny, P., 2014, Automated Training Sample Extraction for Global Land Cover Mapping, Remote Sensing, 6(5), PP. 3965-3987, https://doi.org/10.3390/rs6053965.
Rodriguez-Galiano, V.F., Ghimire, B., Rogan, J., Chica-Olmo, M. & Rigol-Sanchez, J.P., 2012, An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification, ISPRS Journal of Photogrammetry and Remote Sensing, 67, PP. 93-104, https://doi.org/10.1016/j.isprsjprs.2011.11.002.
Rujoiu-Mare, M.R. & Mihai, B.A., 2016, Mapping Land Cover Using Remote Sensing Data and GIS Techniques: A Case Study of Prahova Subcarpathians, Procedia Environmental Sciences, 32, PP. 244-255, https://doi.org/10.1016/j.proenv.2016.03.029.
Som-ard, J., Immitzer, M., Vuolo, F., Ninsawat, S. & Atzberger, C., 2022, Mapping of Crop Types in 1989, 1999, 2009 and 2019 to Assess Major Land Cover Trends of the Udon Thani Province, Thailand, Computers and Electronics in Agriculture, 198, PP. 107083-107098, https://doi.org/10.1016/j.compag.2022.107083.
Steinhausen, M.J., Wagner, P.D., Narasimhan, B. & Waske, B., 2018, Combining Sentinel-1 and Sentinel-2 Data for Improved Land Use and Land Cover Mapping of Monsoon Regions, International Journal of Applied Earth Observation and Geoinformation, 73, PP. 595-604, https://doi.org/10.1016/j.jag.2018.08.011.
Strahler, A.H., Boschetti, L., Foody, G.M., Friedl, M.A., Hansen, M.C., Herold, M. et al., 2006, Global Land Cover Validation: Recommendations for Evaluation and Accuracy Assessment of Global Land Cover Maps, European Communities, 51(4), PP. 1-60.
Varga, K., Szabó, S., Szabó, G., Dévai, G. & Tóthmérész, B., 2014, Improved Land Cover Mapping Using Aerial Photographs and Satellite Images, Open Geosciences, 7(1), PP. 15-26, https://doi.org/10.1515/geo-2015-0002.
Wang, H., Liu, Y., Wang, Y., Yao, Y. & Wang, C., 2023, Land Cover Change in Global Drylands: A Review, Science of The Total Environment, 863, PP. 160943-160956, https://doi.org/10.1016/j.scitotenv.2022.160943.
Yan, X. & Niu, Z., 2021, Reliability Evaluation and Migration of Wetland Samples, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, PP. 8089-8099, https://doi.org/10.1109/jstars.2021.3102866.
Yan, X., Li, J., Smith, A.R., Yang, D., Ma, T. & Su, Y., 2023, Rapid Land Cover Classification Using a 36-Year Time Series of Multi-Source Remote Sensing Data, Land, 12, PP. 2149-2163, https://doi.org/10.3390/land12122149.
Yang, C. & Everitt, J.H., 2012, Using Spectral Distance, Spectral Angle and Plant Abundance Derived from Hyperspectral Imagery to Characterize Crop Yield Variation, Precision Agriculture, 13, PP. 62-75, https://doi.org/10.1007/s11119-011-9248-z.
Yu, L., Du, Z., Dong, R., Zheng, J., Tu, Y., Chen, X. et al., 2022,
FROM-GLC Plus: Toward Near Real-Time and Multi-Resolution Land Cover Mapping, GIScience & Remote Sensing, 59(1), PP. 1026-1047,
https://doi.org/10.1080/15481603.2022.2096184.
Zhu, Z., 2017, Change Detection Using Landsat Time Series: A Review of Frequencies, Preprocessing, Algorithms, and Applications, ISPRS Journal of Photogrammetry and Remote Sensing, 130, PP. 370-384, https://doi.org/10.1016/j.isprsjprs.2017.06.013.
Zhu, Q., Wang, Y., Liu, J., Li, X., Pan, H. & Jia, M., 2021, Tracking Historical Wetland Changes in the China Side of the Amur River Basin Based on Landsat Imagery and Training Samples Migration, Remote Sensing, 13(11), PP. 2161-2176, https://doi.org/10.3390/rs13112161.