Ahmadi Malakut, E., Soltani, A. & Hasanzad Navrodi, I., 2011, A Comparison between Understory Phytodiversity of a Natural Forest and Forest Plantations (Case Study: Langerud – Guilan), Iranian Journal of Forest, 3(2), PP. 157-167.
Bagheri, R. & Erfanifard, Y., 2020, Spatial Distribution of Persian Oak Decline Using a Combination of Geostatistical Techniques and Remote Sensing (Case Study: Barm Plain, Fars Province), Journal of RS and GIS for Natural Resources, 11(1), PP. 104-120, https://doi.org/10.30495/girs.2020.672379.
Barazmand, S., Shataee Joybari, S. & Abdi, O., 2012, Recognition Possibility of Trees Canopy Die Back Using High Resolution Satellite Image of Quick Bird (Case Study: Shastkolate Forest, Gorgan), Iranian Journal of Forest and Poplar Research, 19(4), PP. 477-466, https://doi.org/10.22092/ijfpr.2011.107504.
Barka, I., Lukeš, P., Bucha, T., Hlásny, T., Strejček, R., Mlčoušek, M. & Křístek, Š., 2018, Remote Sensing-Based Forest Health Monitoring Systems-Case Studies from Czechia and Slovakia, Central European Forestry Journal, 64(3-4), PP. 259-275, https://doi.org/10.1515/forj-2017-0051.
Barkey, R.A. & Nursaputra, M., 2017, The Detection of Forest Health Level as an Effort to Protecting Main Ecosystem in the Term of Watershed Management in Maros Watershed, South Sulawesi, The 1st Biennial Conference on Tropical Biodiversity, IOP Conference Series: Earth and Environmental Science, 270(1), P. 012006, https://doi.org/10.1088/1755-1315/270/1/012006.
Bihamta, M.R. & Zare Chahouki, M.A., 2015, Principles of Statistics for the Natural Resources Science, University of Tehran Press, Tehran.
Cavalli, A., Francini, S., McRoberts, R.E., Falanga, V., Congedo, L., De Fioravante, P., Maesano, M., Munafò, M., Chirici, G. & Scarascia Mugnozza, G., 2023, Estimating Afforestation Area Using Landsat Time Series and Photointerpreted Datasets, Remote Sensing, 15(4), PP. 1-26, https://doi.org/10.3390/rs15040923.
Congalton, R.G. & Green, K., 2008, Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 2nd ed.; CRC Press: Boca Raton, FL, USA, https://doi.org/ 10.1201/9781420055139.
Cotrozzi, L., 2022, Spectroscopic Detection of Forest Diseases: A Review (1970–2020), Journal of Forestry Research, 33(1), PP. 21-38, https://doi.org/10.1007/s11676-021-01378-w.
Deering, D.W., Rouse, J.W., Haas, R.H. & Schell, J.A., 1975, Measuring Forage Production of Grazing Units from Landsat MSS Data, In Proceedings of the Tenth International Symposium on Remote Sensing of Environment; Cook, J.J. (Ed.); Ann Arbor, Michigan, USA, PP. 1169-1178.
Deputy of Statistic and Information of Guilan Province, 2021, Data and Statistical Information, The Statistical Yearbook, Publications of Management and Planning Organization of Guilan Province, Rasht, P. 56, https://www.amar.org.ir/Portals/0/PropertyAgent/3909/Files/26995/400-01-01.
ERDAS Imagine, 2014, Hexagon Geospatial, Peachtree Corners Circle Norcross, US.
ESA (European Space Agency), 2018, Sentinle Online, Level-1C, Available at: https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/product-types/level-1c (accessed on 17 June 2018).
Eskandari, S., Jaafari, M.R., Oliva, P., Ghorbanzadeh, O. & Blaschke, Th., 2020, Mapping Land Cover and Tree Canopy Cover in Zagros Forests of Iran: Application of Sentinel-2, Google Earth, and Field Data, Remote Sensing, 12(12), PP. 1-32, https://doi.org/10.3390/rs12121912.
Esmaeili Varaki, M., Zamani, A. & Kazemirad, M., 2012, Numerical Simulation of Various Cut-Offs on Meandering Rivers, A Case Study: Shalman Rood River in Guilan Province, 11th Iranian Hydraulic Conference, Urmia University, Urmia, Iran, November 6-8th.
Ghasemi, M., Latifi, H., Shafeian, E., Naghavi, H. & Pourhashemi, M., 2024, A Novel Linear Spectral Unmixing-Based Method for Tree Decline Monitoring by Fusing UAV-RGB and Optical Space-Borne Data, International Journal of Remote Sensing, 45(4), PP. 1079-1109, https://doi.org/ 10.1080/01431161.2024.2305630.
Haywood, A. & Stone, C., 2011, Mapping Eucalypt Forest Susceptible to Dieback Associated with Bell Miners (Manorina melanophys) Using Laser Scanning, SPOT 5 and Ancillary Topographical Data, Ecological Modelling, 222(5), PP. 1174-1184, https://doi.org/10.1016/j.ecolmodel. 2010.12.012.
Hedayati, M.A., 2001, The Stages of Afforestation in Iran, Range and Forest Magazine, 52, PP. 13-19.
Heikkilä, J., Nevalainen, S. & Tokola, T., 2002, Estimating Defoliation in Boreal Coniferous Forests by Combining Landsat TM, Aerial Photographs and Field Data, Forest Ecology and Management, 158(1-3), PP. 9-23, https://doi.org/10.1016/S0378-1127(00)00671-X.
Hoseinpour, A., Oladi, J., Akbari, H. & Sarajian, M., 2019,
Recognizing Plant Tension in Plantations by Use of UAVs Visible Light Detector, (Case Study: Nekazalemrood Forestry Plan), Ecology of Iranian Forests, 7 (13), PP. 20-28,
https://doi.org/10.29252/ ifej.7.13.20.
Hosseini, Z., Naghavi, H., Latifi, H. & Bakhtiari Bakhtiarvand, S., 2019, Estimating Biomass and Carbon Sequestration of Plantations around Industrial Areas Using Very High Resolution Stereo Satellite Imagery, iForest, 12(6), PP. 533-541, https://doi.org/10.3832/ifor3155-012.
Hosseini, Z., Latifi, H., Naghavi, H., Bakhtiarvand Bakhtiari, S. & Fassnacht, F.E., 2021, Influence of Plot and Sample Sizes on Aboveground Biomass Estimations in Plantation Forests Using Very High Resolution Stereo Satellite Imagery, Forestry: An International Journal of Forest Research, 94(2), PP. 278-291, https://doi.org/ 10.1093/forestry/cpaa028.
Huete, A.R., 1988, A Soil-Adjusted Vegetation Index (SAVI), Remote Sensing of Environment, 25(3), PP. 295-309, https://doi.org/10.1016/0034-4257(88)90106-X.
Islamzadeh, N., Mikaeili Tabrizi, A.R., Mahiny, A.S. & Ghorbani, R., 2022, Landscape Health Mapping by Landsat Images, Journal of Environmental Studies, 47(4), PP. 395-411, https://doi.org/10.22059/JES.2021. 332755.1008242.
Jafari, M., Hosseini, A., Asgari, S., Najafifar, A. & Tahmasebi, M., 2021, Evaluation of Oak Forest Drying in Physiographic and Landuse Units Ilam Province Using Landsat Satellite Images 8, Ecology of Iranian Forests, 9(18), PP. 1-9, https://doi.org/ 10.52547/ifej.9.18.1.
Jahdi, R. & Hazbavi, Z., 2024, Evaluation of Watershed Scale Forest Ecosystem Health by Remote Sensing and Forest Health Monitoring (FHM) Method, Journal of Environmental Science Studies, 8(4), PP. 7612-7627, https://doi.org/10. 22034/JESS.2023.387287.1980.
Jordan, C.F., 1969, Derivation of Leaf Area Index from Quality of Light on Forest Floor, Ecology, 50(4), PP. 663-666, https://doi.org/10.2307/1936256.
Karlson, M., Ostwald, M., Reese, H., Sanou, J., Tankoano, B. & Mattsson, E., 2015, Mapping Tree Canopy Cover and Aboveground Biomass in Sudano-Sahelian Woodlands Using Landsat 8 and Random Forest, Remote Sensing, 7(8), PP. 10017-10041, https://doi.org/10.3390/rs70810017.
Köhl, M., Lasco, R., Cifuentes, M., Jonsson, Ö., Korhonen, K.T., Mundhenk, P., Jesus Navar, J. & Stinson, G., 2015, Changes in Forest Production, Biomass and Carbon: Results from the 2015 UN FAO Global Forest Resource Assessment, Forest Ecology and Management, 352(7), PP. 21-34, https://doi.org/10.1016/j.foreco.2015.05.036.
Lago, A.A.C.d., 2009, Stockholm, Rio, Johannesburg: Brazil and the Three United Nations Conferences on the Environment, Fundação Alexandre de Gusmão, Brazil.
Levesque, J. & King, D., 2003, Spatial Analysis of Radiometric Fractions from High-Resolution Multispectral Imagery for Modelling Individual Tree Crown and Forest Canopy Structure and Health, Remote Sensing of Environment, 84(4), PP. 589-602, https://doi.org/10.1016/S0034-4257(02)00182-7.
Liu, D., Kelly, M. & Gong, P., 2006, A Spatialtemporal Approach to Monitoring Forest Disease Spread Using Multi-Temporal High Spatial Resolution Imagery, Remote Sensing of Environment, 101(2), PP. 167-180, https://doi.org/10.1016/ j.rse.2005.12.012.
Meng, J., Li, S., Wang, W., Liu, Q., Xie, S. & Ma, W., 2016, Mapping Forest Health Using Spectral and Textural Information Extracted from SPOT-5 Satellite Images, Remote Sensing 8(9), PP. 1-20, https://doi.org/10.3390/rs8090719.
Mosayeb Neghad, I., Rostami Shahraji, T., Kahneh, E. & Porbabaii, H., 2007, Evaluation of Native Broadleaved Forest Plantations in East of Guilan Province, Iranian Journal of Forest and Poplar Research, 15(4), PP. 311-319.
Moskal, L.M. & Franklin, S.E., 2004, Relationship between Airborne Multispectral Image Texture and Aspen Defoliation, International Journal of Remote Sensing, 25(14), PP. 2701-2711, https://doi.org/10. 1080/01431160310001642304.
Ogaya, R., Barbeta, A., Başnou, C. & Peñuelas, J., 2015, Satellite Data as Indicators of Tree Biomass Growth and Forest Dieback in a Mediterranean Holm Oak Forest, Annals of Forest Science, 72(1), PP. 135-144, https://doi.org/10.1007/s13595-014-0408-y.
Rouse, J.W., Haas, R.H., Schell, J.A. & Deering, W.D., 1973, Monitoring Vegetation Systems in the Great Plains with ERTS, In Proceedings of the Third ERTS Symposium, NASA SP–351, NASA. Washington, DC, USA, PP. 309-317.
Saba, F., Latifi, H., Valadan Zoej, M.J. & Heipke, C., 2024, Analysis of the Spatio-Temporal Dynamics of Buxus hyrcana Pojark Defoliation Using Spaceborne Satellite Data, Forestry: An International Journal of Forest Research, cpae005, PP. 1-15, https://doi.org/10.1093/forestry/cpae005.
Schultz, M., Clevers, J.G.P.W., Carter, S., Verbesselt, J., Avitabile, V., Quang, H.V. & Herold, M., 2016, Performance of Vegetation Indices from Landsat Time Series in Deforestation Monitoring, International Journal of Applied Earth Observation and Geoinformation, 52, PP. 318-327, https://doi.org/10.1016/j.jag.2016.06.020.
Shafeian, E., Fassnacht, F.E. & Latifi, H., 2023, Detecting Semi-Arid Forest Decline Using Time Series of Landsat Data, European Journal of Remote Sensing, 56(1), P. 2260549, https://doi.org/10.1080/22797254. 2023.2260549.
Soares, C., Príncipe, A., Köbel, M., Nunes, A., Branquinho, C. & Pinho, P., 2018, Tracking Tree Canopy Cover Changes in Space and Time in High Nature Value Farmland to Prioritize Reforestation Efforts, International Journal of Remote Sensing, 39(14), PP. 4714-4726, https://doi.org/ 10.1080/01431161.2018.1475777.
Thales Alenia Space, 2017, Sentinel-2 Products Specification Documents, Eesa Publication, P. 487.
Recanatesi, F., Giuliani, C. & Ripa, M.N., 2018, Monitoring Mediterranean Oak Decline in a Peri-Urban Protected Area Using the NDVI and Sentinel-2 Images: The Case Study of Castelporziano State Natural Reserve, Sustainability, 10(9), PP. 1-10, https://doi.org/10.3390/su10093308.
Waser, L.T., Küchler, M., Jütte, K. & Stampfer, T., 2014, Evaluating the Potential of WorldView-2 Data to Classify Tree Species and Different Levels of Ash Mortality, Remote Sensing, 6(5), PP. 4515-4545, https://doi.org/10.3390/rs6054515.
Zhang, J., Cong, S., Zhang, G., Ma, Y., Zhang, Y. & Huang, J., 2022, Detecting Pest-Infested Forest Damage through Multispectral Satellite Imagery and Improved UNet++, Sensors (Basel), 22(19), PP. 1-21, https://doi.org/10.3390/s22197440.