Anderson, M.C., Yang, Y., Xue, J., Knipper, K.R., Yang, Y., Gao, F. & Rey-Sanchez, C., 2021,
Interoperability of ECOSTRESS and Landsat for Mapping Evapotranspiration Time Series at Sub-Field Scales, Remote Sensing of Environment, 252, PP. 112-189,
https://doi.org/10.1016/j.rse.2020.112189.
Bakhshi, E. & Khalookakaei, R., 2010,
Application of Artificial Neural Networks in Remote Sensing, Geomatics Conference, Tehran.
https://civilica.com/doc/102419.
Bazrgar Bajestani, A. & Tayebi, M., 2021, Presentation of a New Method for the Fusion of Spatial-Temporal Land Surface Temperature Products of ASTER and MODIS Sensors Based on a Two-Dimensional Stationary Wavelet Transform, Iranian Journal of Remote Sensing and GIS, 12(4), PP. 93-114, https://doi: 10.52547/gisj.12.4.93.
Dastjerdi, F., Azarakhshi, M. & Bashiri, M., 2019,
Comparison of Efficiency for
Hydrological Models (AWBM & SimHyd) and Neural Network (MLP &
RBF) in Rainfall–Runoff Simulation (Case Study: Bar Aryeh Watershed
-Neyshabur), Jwmseir, 13(45), PP. 107-117, DOI:
20.1001.1.20089554.1398. 13.45.13.7 (In Persian).
Dehid Havei, H., 2020, Forecasting Crude Oil Prices Using Improved DeepBelief Network (IDBN) And Long-Term Short-Term.emory Network (LSTM), Imam Reza International University.
Ebahrami, S., Amir-Ahmadi, A., Habibolahian, M. & Ebrahimi M., 2015,
Analyzing the Criticality Related to the Landslide Incidence Using the Probability Models for the Weight to Evidence (Bayesian Theory) (Case Stady: Bar Basin of Neyshabur), Geography and Environmental Planning, 25(4), PP. 125-144, DOI:
20. 1001.1.20085362.1393.25.4.8.6 (In Persian).
Gerami, Z., Peyrowan, H.R. & Partovi, A., 2022,
Introducing Suitable Places for Establishing Rainwater Catchment Systems in Latyan Watershed, Journal of Rainwater Catchment Systems, 9(4), PP. 33-42,
20.1001.1.24235970.1400.9.4.1.9 (In Persian).
Hadadian Sanu, H., Karimi, A., Esfandiapour Borujeni, I. & Haqnia, G., 2015, Comparing the Efficiency of RMSE and NRMSE to Calculate the Effective Error Value of Models with Different Training Data Sets, The 14th Congress of Soil Sciences of Iran.
Hajizadeh Tahan, M., Ghasemzadeh, M. & Rezaeian, M., 2020,
An Evolutionary Attention-Based Deep Long Short-Term Memory for Time Series Prediction, Computational Intelligence in Electrical Engineering, 11(4), PP. 15-28, DOI:
10.22108/isee.2020.121597.1334 (In Persian).
Hasanlou, M., Jamshidi, M. & Sattari, M., 2018,
Urmia Lake Salinity Mapping Using Support Vector Regression and Landsatmagery, Hydrogeomorphology, 5(14), PP. 43-65, DOI:
20.1001.1.23833254. 1397.5.14.3.7 (In Persian).
Hejazizadeh, Z.,
Ziaian, P. &
Shirkhani, A.,
2013,
Estimation of Surface Temperature Using Thermal-Band Data in the West of Tehran Province and Qazvin,
Geography,
11(38), PP. 33-49, ISSN: 2783-3739 (In Persian).
Jaafar, H., Mourad, R. & Schull, M., 2022,
A Global 30-m ET Model (HSEB) Using Harmonized Landsat and Sentinel-2, MODIS and VIIRS: Comparison to ECOSTRESS ET and LST, Remote Sensing of Environment, 274, P. 112995,
https://doi.org/10.1016/j.rse.2022.112995.
Kaffash, M. & Sanaei-Nejad, S.H., 2020,
Fusion of MODIS and Landsat-8 Land Surface Temperature Images Using Spatio-Temporal Image Fusion Model, Iranian Journal of Soil and Water Research, 51(3), PP. 763-773, DOI:
10.22059/ijswr.2019. 291016.668360 (in Persian).
Khalil, U., Azam, U., Aslam, B., Ullah, I., Tariq, A., Li, Q. & Lu,
L., 2022,
Developing a Spatiotemporal Model to Forecast Land Surface Temperature: A Way Forward for Better Town Planning, Sustainability, 14(19), P. 11873,
https://doi.org/10.3390/ su141911873.
Kim, H., 2022, 4 Tracing the Origins of Artificial Intelligence: A Kantian Response to McCarthy’s Call for Philosophical Help, Kant and Artificial Intelligence, 129, DOI: 10.1515/9783110706611-004 (In Book: Kant and Artificial Intelligence).
Li, H., Wu, G., Xu, F. & Li, S., 2021,
Landsat-8 and Gaofen-1 Image-Based Inversion Method for the Downscaled Land Surface Temperature of Rare Earth Mining Areas, Infrared Physics & Technology, 113, P. 103658,
https://doi.org/10.1016/j.infrared. 2021.103658.
Malik, A., Tikhamarine, Y., Souag-Gamane, D., Kisi, O. & Pham, Q.B., 2020, Support Vector Regression Optimized by Meta-Heuristic Algorithms for Daily Streamflow Prediction, Stochastic Environmental Research and Risk Assessment, 34, PP. 1755-1773, DOI: 10.1007/s00477-020-01874-1.
Rawat, K.S., Sehgal, V.K. & Ray, S.S., 2019,
Downscaling of MODIS Thermal Imagery, The Egyptian Journal of Remote Sensing and Space Science, 22(1), PP. 49-58,
https://doi.org/10.1016/j.ejrs.2018.01.00.
Salehi, H. & Shamsoddini, A., 2021,
MODIS and Sentinel-2 Data Fusion For 10-m Daily Evapotranspiration Mapping, Iranian Journal of Irrigation & Drainage, 14(6), PP. 1881-1892, DOI:
20.1001.1.20087942.2021. 14.6.20.1 (In Persian).
Sedighi, F., Vafakhah, M. & Javadi, M.R., 2016, Application of Artificial Neural Network for Snowmelt-Runoff (Case Study: Latyan Dam Watershed), Journal of Watershed Management Research, 6(12), PP. 43-54 (In Persian).
Shao, Z., Cai, J., Fu, P., Hu, L. & Liu, T., 2019,
Deep Learning-Based Fusion of Landsat-8 and Sentinel-2 Images for a Harmonized Surface Reflectance Product, Remote Sensing of Environment, 235, PP. 111-425,
https://doi.org/10.1016/j.rse.2019.111425.
Taei Semiromi, S., Moradi, H. & Khodagholi, M., 2014, Simulation and Prediction Some of Climate Variable by Using Multi Line SDSM and Global Circulation Models (Case Study: Bar Watershed Nayshabour), Human & Environment, 12(28, Spring 2014), PP. 1-15 (In Persian).
Wang, j., Schmitz, O., Lu, M. & Karssenberg, D., 2020,
Thermal Unmixing Based Downscaling for Fine Resolution Diurnal Land Surface Temperature Analysis, ISPRS Journal of Photogrammetry and Remote Sensing, 161, PP. 76-89,
https://doi.org/10.1016/j.isprsjprs.2020.01.014.
Xue, J., Anderson, M.C., Gao, F., Hain, C., Sun, L., Yang, Y. & Schull, M., 2020,
Sharpening ECOSTRESS and VIIRS Land Surface Temperature Using Harmonized Landsat-Sentinel Surface Reflectances, Remote Sensing of Environment, 251, PP. 112-055,
https://doi.org/10.1016/j.rse.2020.112055.
Yan, S., 2018,
Understanding LSTM and Its Diagrams, Available Online:
https://medium.com/mlreview, understanding-lstm-and-its-diagrams-37e2f46f1714 (Accessed on 26 June 2018).
Yasrab, R., Pound, M.P., French, A.P. & Pridmore, T.P., 2020, PhenomNet: Bridging Phenotype-Genotype Gap: A CNN-LSTM Based Automatic Plant Root Anatomization System, BioRxiv, 2020-05, https://doi.org/10.1101/2020.05.03.075184.
Zhang, Q., Wang, H., Dong, J., Zhong, G. & Sun, X., 2017,
Prediction of Sea Surface Temperature Using Long Short-Term Memory, IEEE Geoscience and Remote Sensing Letters, 14(10), PP. 1745-1749,
DOI:
10.1109/LGRS.2017.2733548.