Document Type : Original Article
Authors
1 Faculty of Engineering, Islamic Azad University (IAU), Ramsar Branch, Ramsar, Iran
2 Mapping and GIS Department at Management and Planning Organization, Guilan, Rasht, Iran
3 Faculty of Civil Engineering Rahman Institute of Higher Education: Ramsar, Ramsar, Iran
Abstract
Keywords
Abrams, M, Hook, S. & Ramachandran, B., 2002, ASTER User Handbook, version 2, Jet Propulsion Laboratory: Pasadena, CA, USA.
Boori, M.S., 2015, A Comparison of Land Surface Temperature, Derived from AMSR-2, Landsat and ASTER Satellite Data, J. Geogr. Geol., 7, PP. 61-69, http://dx.doi.org/10.5539/jgg.v7n3p61.
Bittencourt, L., Candido, C., Cândido, C. & de Dear R.J., 2010, Air Movement Acceptability Limits and Thermal Comfort in Brazil's Hot Humid Climate Zone, Building and Environment, 45(1), PP. 222-229, https://doi.org/10.1016/j.buildenv.2009. 06.005.
Carlson, T.N.& Ripley, D.A., 1997, On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index, Remote Sens. Environ., 62, PP. 241-252, http://dx.doi.org/10.1016/S0034-4257(97)00104-1.
Clarke, J.F., 1972, Some Effects of the Urban Structure on Heat Mortality, Environ. Res., 5, P. 93, https://doi.org/10.1016/0013-9351(72)90023-0.
Chatzipoulka, C., Nikolopoulou, M. & Watkins, R., 2015, The Impact of Urban Geometry on the Radiant Environment in Outdoor Spaces, 9th International Conference on Urban Climate, ICUC9 9th International Conference on Urban Climate jointly with 12th Symposium on the Urban Environment, https://kar.kent.ac.uk/id/eprint/52695.
Du ,C., Ren, H., Qin, Q., Meng, J. & Zhao, S., 2015, A Practical Split-Window Algorithm for Estimating Land Surface Temperature from Landsat 8 Data, Remote Sensing, 7(1), PP. 647-665, http://dx.doi.org/10.3390/ rs70100647.
EPA (U.S. Environmental Protection Agency), 2003, Beating the Heat: Mitigating Thermal Impacts, Nonpoint Source News-Notes, 72, PP. 23-26.
EPA (U.S. Environmental Protection Agency), 2008, Reducing Urban Heat Islands: Compendium of Strategies, https://www.epa.gov/heat-islands/heat-island-compendium.
Esri, 2018, ModelBuilder—ArcMap | Documenta-tion (Version 10.6). ArcGIS Desktop Help. https://desktop.arcgis.com/ en/arcmap/10.6/analyze/modelbuilder/what-is-modelbuilder.htm.
Garratt, J., 1992, The Atmospheric Boundary Layer, Cambridge University Press: Cambridge.
Jenks, G.F. ,1967, The Data Model Concept in Statistical Mapping, International Yearbook of Cartography 7: 186-190, https://doi.org/ 10.1002/qj.49712051919.
Jiménez-Muñoz, J.C. & Sobrino, J.A., 2010, A Single-Channel Algorithm for Land Surface Temperature Retrieval from ASTER Data, Ieee Geoscience And Remote Sensing Letters, 1, PP. 176-179, https://doi.org/10.1109/LGRS.2009.2029534.
Jiménez-Muñoz, J.C., Sobrino, J.A., Gillespie, A., Sabol, D. & Gustafson, W.T., 2006, Improved Land Surface Emissivities over Agricultural Areas Using ASTER NDVI, Remote Sens. Environ., 103, PP. 474-487, https://doi.org/10.1016/j.rse.2006.04.012.
Johnson, G.T., Oke, T.R., Steyn, D.G., Watson, I.D. & Voogt, J.A., 1991, Simulation of Surface Urban Heat Island under ‘Ideal’ Conditions at Night, Part 1, Theory and Tests against Field Data, Boundary-Layer Meteorology, 56, PP. 275-294, https://doi.org/ 10.1007/BF00120424.
Jouybari Moghaddam, Y., Akhoondzadeh, M. & Saradjian, M., 2015, A Split-Window Algorithm for Estimating LST from Landsat-8 Satellite Images, Journal of Geomatics Science and Technology, JGST, 5(1), PP. 215-226, http://jgst.issgeac.ir/ article-1-225-fa.html.
Kim, S., Kim, M. & Kim, Y., 2012, The Impacts of PTA Formation on Small Economies’ Tax Competition for FDI Inflows, Economic Modelling, Elsevier, 29(6), PP. 2734-2743, http://dx.doi.org/ 10.1016/j.econmod.2012.08.003.
Levermore, G. & Cheung, H., 2012, A Low-Order Canyon Model to Estimate the Influence of Canyon Shape on the Maximum Urban Heat Island Effect, Building Services Engineering Research and Technology, 33(4), PP. 371-385, https://doi.org/10.1177/0143624411417899.
Li, Z.L., Tang, B.H., Wu, H., Ren, H.Z., Yan, G.J., Wan, Z.M.,Trigo, I.F. & Sobrino, J.A., 2013, Satellite-Derived Land Surface Tempera-ture: Current Status and Perspectives, Remote Sensing of Environment, 131, PP. 14-37, http://dx.doi.org/10.1016%2Fj.rse.2012. 12.008.
Liu, L. & Zhang, Y., 2011, Urban Heat Island Analysis Using the Landsat TM Data and ASTER Data: A Case Study in Hong Kong, Remote Sens., 3, PP. 1535-1552, http://dx.doi.org/10.3390/rs3071535.
Martano ,M., 2000, Estimation of Surface Roughness Length and Displacement Height from Single-Level Sonic Anemometer Data, Journal of Applied Meteorology, 39(5), PP. 708-715, https://doi.org/10.1175/1520-0450(2000) 039%3C0708:EOSRLA%3E2.0.CO;2.
Montávez, J.P., González-Rouco, J.F. & Valero, F., 2008, A Simple Model for Estimating the Maximum Intensity of Nocturnal Urban Heat Island, International Journal of Climatology, 28, PP. 235-242, http://dx.doi.org/10.1002/joc.1526.
Motieyan, H. & Hashemi Ashka, S.H., 2022, Analysis of the Urban Geometry’s Effects on Nocturnal Urban Heat Islands Using Remote Sensing and GIS (Case Study: Golestan Town, District 22 of Tehran), Journal of Natural Environmental Hazards, 10(30), PP. 51-68, https://doi.org/10.22111/ jneh.2020.34497.1670.
Nakata, C.M. & De Souza, L.C.L., 2013, Verification of the Influence of Urban Geometry on the Nocturnal Heat Island Intensity, Journal of Urban and Environmental Engineering, 7(2), PP. 286-292, http://dx.doi.org/10.4090/juee.2013. v7n2.286292.
Nakata, O.C.M., De Souza, L.C.L. & Rodrigues, D.S., 2015, A GIS Extension Model to Calculate Urban Heat Island Intensity Based on Urban Geometry, Proceedings of CUPUM 2015, Conference Cambridge, Massachusetts (USA), PP. 1-16, http://dx.doi.org/10.1016/j.compenvurbsys.2017.09.007.
Nakata, C.M., De Souza, L.C.L. & Rodrigues, D.S., 2018, THIS – Tool for Heat Island Simulation: A GIS Extension Model to Calculate Urban Heat Island Intensity Based on Urban Geometry, Computers, Environment and Urban Systems, 67, PP. 157-168, https://doi.org/10.1016/ j.compenvurbsys. 2017.09.007.
Sayadi, F., Hejazizadeh, Z. & Saligheh, M., 2022, The Effect of Urban Geometry on the Formation of Urban Heat Islands of Tehran (Case Study: Districts 2 and 6 of Region 3), Journal of Geography, 20(72), PP. 1-18, https://dorl.net/dor/ http://dor.net/ dor/20.1001.1.27833739.1401.20.72.1.7.
Sobrino, J. & Jiménez-Muñoz, J., 2014, Minimum Configuration of Thermal Infrared Bands for Land Surface Temperature and Emissivity Estimation in the Context of Potential Future Mission, Remote Sensing Environment, 148, PP. 158-167, http://dx.doi.org/ 10.1016/j.rse.2014.03.027.
Stewart I.D., Krayenhoff, E.S., Voogt, J.A., Lachapelle, J.A., Allen, M.A. & Broadbent, A.M., 2021, Time Evolution of the Surface Urban Heat Island, Earth's Future, 9, e2021EF002178, https://doi.org/ 10.1029/2021EF002178.
Su, Z., Schmugge, T., Kustas, W.P. & Massman, W.J., 2001, An Evaluation of Two Models for Estimation of the Roughness Height for Heat Transfer between the Land Surface and the Atmosphere, J. Appl. Meteorol., 40, PP. 1933-1951, https://doi.org/ 10.1175/1520-0450(2001)040%3C1933:AEOTMF%3E2.0.CO;2.
Tsai, J., Tsuang, B., Lu, P., Chang, K., Yao, M. & Shen, Y., 2010, Measurements of Aerodynamic Roughness, Bowen Ratio, and Atmospheric Surface Layer Height by Eddy Covariance and Tethersonde Systems Simultaneously over a Heterogeneous Rice Paddy, Journal of Hydrometeorology, 11(2), PP. 452-466, https://doi.org/10.1175/2009JHM1131.1.
Van de Griend, A. & Owe, M., 1993, On the Relationship between Thermal Emissivity and the Normalized Difference Vegetation Index for Natural Surfaces, Int. J. Remote Sens., 14, PP. 1119-1131, https://doi.org/10.1080/01431169308904400.
Yang, L., Qian, F., Song, D. & Ke-Jia, Z., 2016, Research on Urban Heat-Island Effect, Procedia Engineering, 169, PP. 11-18, https://doi.org/10.1016/j.proeng.2016.10.002