Determine the Vulnerability of the Aquifer Using the Standard Drastic and Data-Based Methods (Case Study: Kochisfahan Aquifer)

Document Type : علمی - پژوهشی

Authors

1 Ph.D. Candidate of Water Science and Engineering Dep., School of Agriculture, Birjand University

2 Associate Prof. of Water Science and Engineering, School of Agriculture, Birjand University

Abstract

The use of groundwater plays an important rule for agricultural and drinking water purposes in the north of Iran especially in Koochesfehan region. In these areas, the excessive use of chemical fertilizers, especially nitrogen based ones, beside the inadequacy in the treatment and release of urban and industrial wastewater are some of the most effective parameter in groundwater pollution, especially about the concentration of nitrate. Therefore, identification and mapping of vulnerable aquifer areas, i.e. areas where pollutants can be penetrated and discharged from the ground surface to the groundwater system, is an appropriate management tool for preventing the pollution of groundwater resources. In this study, with the purpose of identifying vulnerable aquifers and areas with high nitrate content as the main vulnerability areas, by using 7 variables the Drastic method and by using the Aller weighing criterion, vulnerability index of the region was estimated. Then, by comparing the vulnerability index and the amount of nitrate measured in the zoned area, the correlation between nitrate and Drastic vulnerability index was calculated. The results showed that the vulnerability of the Astaneh-Koushfahan plain aquifer is located in four areas: 56.16% of the plain has a low vulnerability, 51.29% has a low to moderate vulnerability, 28.46% has a moderate to high vulnerability, 67.1% is vulnerable. It is too much. The correlation between the Drastic (vulnerability) index and the concentration of nitrate was 80%, which confirmed that nitrate was the main cause of vulnerability in this the aquifer. So, finding a method for estimating the amount of nitrate in present and future in this area with high speed and precision was assumed as the goal of this study. The amoun of nitrate were estimated with four artificial intelligence methods: artificial neural network, fuzzy model, support vector model and fuzzy-neural network. For this purpose, the seven Drastic variables data assumed as input parameters and the measured nitrate content in 30 different wells of the area were zoned by use of GIS software and divided into two categories of training and experimentation and they give as output parameters to all data-driven models. The results showed that all used artificial intelligence models give a good estimation of the amount of nitrate, but the neural network model had the best results, so that there was a correlation of 98% between computational nitrate and observation nitrate value. Finally, by choosing the model of the neural network as the superior model, it was tried to estimate the nitrate by decreasing the input parameters. The results showed that with 5 parameters of soil environment-unsaturated medium-saturated environment -water-hydraulic and eliminating two parameters of nutrition and topography, the correlation of estimated nitrate with the actual amount of measured nitrate is 0.90.

Keywords


  1. آرزومنـدی، م.، 1393، ارزیـابی آسیب‌پذیری آبخـوان بـا اسـتفاده از دراستیک فازی (مطالعة موردی: دشت آستانه-کوچصفهان). پایان‌نامة کارشناسی ارشد منابع اّب، دانشکدة کشاورزی دانشگاه بیرجند.
  2. آرزومنـدی، م.، خاشعی سیوکی، ع.، جوادی، س.، هاشمی، س.، 1394، ارزیابی آسیب‌پذیری آب زیرزمینی دشت آستانه-کوچصفهان با استفاده از مدل اصلاح‌شدة DRASTIC-NW، نشریة آبیاری زهکشی ایران، جلد 9، شمارة 1، فروردین‌ـ اردیبهشت، ص. 75.
  3. احمدی، ج.، آخوندی، ل.، عباسی، ه.، خاشعی سیوکی، ع.، علیمددی، م.، 1392، تعیین آسیب‌پذیری آبخوان با استفاده از مدل دراستیک و اعمال آنالیز حساسیت تک‌پارامتری و حذفی (مطالعة موردی: دشت سلفچگان- نیزار)، مجلة پژوهش‌های حفاظت آب‌وخاک، جلد 20، شماره 3.
  4. اسحاق‌پور، م.، منشوری، م.، 1387، ارزیابی کیفی آب‌های زیرزمینی محدودة آستانه- کوچصفهان در استان گیلان و بررسی تأثیر کیفیت آب رودخانه سفیدرود بر روی آن، چهارمین همایش زمین‌شناسی و محیط‌زیست دانشگاه آزاد اسلامی، واحد اسلامشهر، اسفند، 7 صفحه.
  5. پورفرح‌آبادی، ا.، خلقی، م.، محمدی، ک.، 1387، شبیه‌سازی آلودگی نیترات در آبخوان کرج با استفاده از مدل شبکة عصبی. سومین کنفرانس مدیریت منابع آب.
  6. زارع ابیانه، ح.، بیات ورکشی، م.، اخوان، س.، محمدی، ح.،1390، تخمین نیترات آب زیرزمینی دشت همدان- بهار با استفاده از شبکة عصبی مصنوعی و اثر تفکیک داده‌ها بر دقت پیش‌بینی، محیط‌شناسی، سال 37، شمارة 58، ص.۱.
  7. علی‌عسگری، ک.، معاضد، ه.، قربانی‌زاده خرازی، ح.، 1389، مدل‌سازی آلودگی نیترات در آب‌های زیرزمینی حاشیة زاینده‌رود با استفاده از شبکة عصبی مصنوعی، اولین کنفرانس بین‌المللی مدل‌سازی گیاه، آب، خاک و هوا.
  8. ندیری، ع.، اصغری مقدم، الف.، عبقری، ه.، فیجانی، الف.، 1392، توسعة مدل‌های هوش مصنوعی مرکب در برآورد قابلیت انتقال آبخوان، مطالعة موردی: دشت تسوج، مجلة تحقیقات منابع آب ایران، سال 9، شمارة 1، پیاپی 26.
  9. Almasri, M.N. & Kaluarachchi, J.J., 2005, Modular Neural Networks to Predict the Nitrate Distribution Inground Water Using the Onground Nitrogen Loading and Recharge Data, Environmental Modelling & Software, 20, PP. 851-871.
  10. Aller, L., Bennet, T., Lehr, J.H., Petty, R.J. & Hackett, G., 1987, DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings, EPA/600/2-87/035, U.S. Environmental Protection Agency, Ada, Oklahoma, PP: 19-25.
  11. Arezoomand, M., Langrudi, M., Khasheisivaki, A., Javadi, S., Hashemi, R., 2016, Evaluation of Vulnerability of Aquifers by Improved Fuzzy DRASTIC Method. Case Study: Aastane Kochesfahan Plain in Iran, Ain Shams Engineering Journal, 7, PP. 11-20.
  12. Babiker, I.S., Mohamed, M.A.A., Hiyama, T. & Kikuo, K., 2005, A GIS-based DRASTIC Model for Assessing Aquifer Vulnerability in Kakamigahara Heights, Gifu Prefecture, Central Japan, Science of the Total Environment, 345(1-3), PP. 127-140.
  13. Dixon, B., 2005, Groundwater Vulnerability Mapping: A GIS and Fuzzy Rule Based Integrated Tool, Applied Geography, 25, PP. 327-347.
  14. Diamantopoulou, M.J., Antonopoulos, V.Z. & Papamichail, D.M., 2005, The Use of a Neural Network Technique for the Prediction of Water Quality Parameters of Axios River in Northern Greece, EuropeanWater, 11/12, PP. 55-62.
  15. El-Naqa, A., Hammouri, N. & Kioso, M., 2006, GIS Based Elevation of Groundwater Vulnerability in the Russefia Area Jordan, Revista Mexicana de Ciencias Geologicas, 23(3), PP. 277-287.
  16. Gemitzi, A., Petalas, C., Tsihrintzis, V. & Pisinaras, V., 2006, Assessment of Groundwater Vulnerability to Pollution: A Combination of GIS, Fuzzy Logic and Decision Making Techniques, Environmental Geology, 49(5), PP. 653-673.
  17. Hongxing, L., Chen, P.C.P. & Huang, H.P., 2000, Fuzzy Neural Intelligent System, Mathematical Foundation and the Application in Engineering, CRC Press LLC.
  18. Kaluli, J.W., Madramootoo, C.A., & Djebbar, Y., 1998, Modeling Nitrate Leaching Using Neural Networks, Water Science Technology, 38(7), PP. 127-134.
  19. Larsen, P.M., 1980, Industrial Applications of Fuzzy Logic Control, International Journal of Man Machine Studies, 12, PP. 3-10.
  20. Mamdani, E.H., Assilian, S., 1975, An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller, International Journal of Man-Machine Studies, 7, PP. 1-13.
  21. Mamdani, E.H., 1976, Advances in the Linguistic Synthesis of Fuzzy Controllers, International Journal of Man-Machine Studies, 8, PP. 669-678.
  22. Mantero, P., Moser, G. & Serpico, SB., 2005, Partially Supervised Classification of Remote Sensing Images through SVM-Based Probability Densityestimation, IEEE Trans. on Geoscience and Remote Sensing, 43, PP. 559-570.
  23. Mountrakis, G., Im, J. & Ogole, C., 2011, Support Vector Machines in Remote Sensing: A Review, ISPRS Journal of Photogrammetry and RemoteSensing, 13, PP. 247-259.
  24. Nadiri, A.A., Chitsazan, N., Tsai, F.T.C. & Moghaddam, A.A., 2014, Bayesian Artificial Intelligence Model Averaging for Hydraulic Conductivity Estimation, Journal of Hydrologic Engineerin, 19, PP. 520-532.
  25. Napolitano, P., 1995, GIS for Aquifer Vulnerability Assessment in the Piana Campana, Southern Italy, Using the DRASTIC and SINTACS Method, Prof. A.G. Fabbri, Thesis of Master of Siences in Geology Survey, International Institute for Aerospace Survey and Earth Sciences.
  26. Napolitano, P. & Fabbri, A.G., 1996, Single-Parameter Sensitivity Analysis for Aquifer Vulnerability Assessment Using DRASTIC and SINTACS, HydroGIS 96: Application of Geographic Information Systems in Hydrology and Water Resources Managemen, IAHS Public, 235, PP. 559-566. of Hydrogeologists, Slovak Association of Hydrogeologists, Engineering Geology, 67(6-8), PP. 290-308, Project, Environmental Sciences Division, National Hydrology Research Institute.
  27. Pulido-Calvo, I. & Gutierrez-Estrada, J.C., 2009, Improved Irrigation Water Demand Forecasting Using a Soft-Computing Hybrid Model, Biosystems Engineering, 102, PP. 202-218.
  28. Ramasamy, N., Krishnan, P., Bernard, J.C. & Ritter, W.F., 2003, Modeling Nitrate Concentration in Ground Water Using Regression and Neural Networks, FREC Research Reports, Department of Food and Resource Economics University of Delaware.
  29. Samey, A.A.& Gang, C., 2008, A GIS Based DRASTIC Model for the Assessment of Groundwater Vulnerability to Pollution in West Mitidja: Blida City, Algeria, Research Journal of Applied Sciences, 3(7), PP. 500- 507.
  30. Srivastava, D.K. & Bhambhu, L., 2009, Data Classifi-Cation Using Support Vector Machine, Journal of Theoretical and Applied Information Technology, PP: 1-7.
  31. Vlaicu, M. & Munteanu, C.M., 2008, Karst Groundwaters Vulnerability Assessment Method.
  32. Wen, X., Wu, J. & Si, J., 2009, A GIS-based DRASTIC Model for Assessing Shallow Groundwater Vulnerability in the Zhangye Basin, Northwestern China, Environ Geol, 57, PP. 1435-1442.
  33. Zadeh, L. A., 1965, Fuzzy sets, Journal of Information and Control, 8: 338-353.
  34. Zhang, Zh., Lieven, V., Eva, De, C., XiaoKun, Ou. & De Wulf, R., 2008, Vegetation Change Detection Using Artificial Neural Networks with Ancillary Datain Xishuangbanna, Yunnan Province, China, Chin. Sci. Bull, 52(2), PP. 232-243.