Amiri, M. & Soleimani, S.A., 2021, ML-Based Group Method of Data Handling: An Improvement on the Conventional GMDH, Complex Intell. Syst., 7, PP. 2949-2960.
Amiri, M. & Soleimani, S.A., 2022, Hybrid Atmospheric Satellite Image-Processing Method for Dust and Horizontal Visibility Detection through Feature Extraction and Machine Learning Techniques, J. Indian Soc. Remote Sens., 50, PP. 523-532.
Amiri, M., Soleimani, S.A. & Soltani Tafreshi, F., 2020, Dust and Sand Extraction from MODIS Satellite Imagery Using Artificial Neural Network, Iranian Journal of Remote Sensing and GIS, 12(1), PP. 37-54
Chen, Z., Chen, D., Xie, X., Cai, J., Zhuang, Y., Cheng, N., He, B. & Gao, B., 2019, Spatial Self-Aggregation Effects and National Division of City-Level PM2.5 Concentrations in China Based on Spatio-Temporal Clustering, Journal of Cleaner Production, 207, PP. 875-881.
Fan, W., Qin, K., Cui, Y., Li, D. & Bilal, M., 2020, Estimation of Hourly Ground-Level PM2.5 Concentration Based on Himawari-8 Apparent Reflectance, IEEE Transactions on Geoscience and Remote Sensing, 59(1), PP. 76-85.
Feng, L., Li, Y., Wang, Y. & Du, Q., 2020, Estimating Hourly and Continuous Ground-Level PM2.5 Concentrations Using an Ensemble Learning Algorithm: The ST-Stacking Model, Atmospheric Environment, 223, P. 117242.
Guo, J.-P.,
Zhang,
X.-Y,
CHE,
H.,
Gong,
S.-L.,
An,
X.,
Cao,
Ch.,
Guang,
J.,
Zhang, H.,
Wang, Y.,
Zhang, X.-CH.,
Xue, M. &
Li, X.-W., 2009,
Correlation between PM Concentrations and Aerosol Optical Depth in Eastern China, Atmospheric Environment, 2009, 43(37), PP. 5876-5886.
Harba, H.S., Harba, E. & Farttoos, M., 2020, Prediction of Dust Storm Direction from Satellite Images by Utilized Deep Learning Neural Network, 2020 6th International Engineering Conference “Sustainable Technology and Development"(IEC), IEEE, Erbil, Iraq (23 June 2020), DOI.org/10.1038/s41612-023-00348-9.
Ji, L. & Fan, K., 2019, Climate Prediction of Dust Weather Frequency over Northern China Based on Sea-Ice Cover and Vegetation Variability, Climate Dynamics, 53(1-2), PP. 687-705.
Li, X. & Zhang, X., 2019, Predicting Ground-Level PM2.5 Concentrations in the Beijing-Tianjin-Hebei Region: A Hybrid Remote Sensing and Machine Learning Approach, Environmental Pollution, 249, PP. 735-749.
Li, S., Zou, B., Fang, X. & Lin, Y., 2020, Time Series Modeling of PM2.5 Concentrations with Residual Variance Constraint in Eastern Mainland China during 2013-2017, Science of the Total Environment, 710, P. 135755.
Liu, G. & Park, S.U., 2007, The Logarithm-Linear Relationship of the Occurrence Frequency to the Duration of Sand-Dust Storms: Evidencee from Observationa Data in China, J. Arid. Environments, 71(2), PP. 243-249.
Park, S., Shin, M., Im, J., Song, C.-K., Choi, M., Kim, J., Lee, S., Park, R., Kim, J. & Lee, D.-W., 2019, Estimation of Ground-Level Particulate Matter Concentrations through the Synergistic Use of Satellite Observations and Process-Based Models over South Korea, Atmospheric Chemistry and Physics, 19(2), PP. 1097-1113.
Rahmati, O., Panahi, M., Ghiasi, S.S., Deo, R.C., Tiefenbacher, J.P., Pradhan, B., Jahani, A., Goshtasb, H., Kornejady, A. & Shahabi, H., 2020, Hybridized Neural Fuzzy Ensembles for Dust Source Modeling and Prediction, Atmospheric Environment, 224, P. 117320.
Rezapour, K., Tavosi, T. & Khsrovi, M., 2010, A Study of the Causes of Formation of Arabian Dust Storms and Its Expansion over Iran, The Fourth International Congress of Geographers of the Islamic World, Zahedan.
Sahu, S.K., Sharma, S., Zhang, H., Chejarla, V., Guo, H., Hu, J., Ying, Q., Xing, J. & Kota, S.H., 2020, Estimating Ground Level PM2.5 Concentrations and Associated Health Risk in India Using Satellite Based AOD and WRF Predicted Meteorological Parameters, Chemosphere, 255, P. 126969.
Samadi, M. & Darvishi Boloorani, A., 2014, Global Dust Detection Index (GDDI); A New Remotely Sensed Methodology for Dust Storms Detection, Journal of Environmental Health Science & Engineering, 12, P. 20.
Shao, Y., Ma, Z., Wang, J. & Bi, J., 2020, Estimating Daily Ground-Level PM2.5 in China with Random-Forest-Based Spatiotemporal Kriging, Science of The Total Environment, 740, P. 139761.
Taghavi, F., Olad, A. & Safarrad, T., 2012, Highlighting the Dust Storms of Western Iran Using MODIS Spectral Features, Proceedings of the 15th Iran Geophysics Conference, Atmospheric Sciences Section, Ordibehesht, P. 109.
Wang, X. & Sun, W., 2019, Meteorological Parameters and Gaseous Pollutant Concentrations as Predictors of Daily Continuous PM2.5 Concentrations Using Deep Neural Network in Beijing–Tianjin–Hebei, China, Atmospheric Environment, 211, PP. 128-137.
Wang, W., Zhao, S., Jiao, L., Taylor, M., Zhang, B., Xu, G. & Hou, H., 2019, Estimation of PM2.5 Concentrations in China Using a Spatial Back Propagation Neural Network, Scientific Reports, 9(1), PP. 1-10.
Yoon, J.H., Li, Y., Lee, M.S. & Jo, M., 2019, Deep Learning Drone Flying Height Prediction for Efficient Fine Dust Concentration Measurement, Proceedings of the 13th International Conference on Ubiquitous Information Management and Communication (IMCOM) 2019 (pp.1112-1119)a, International Conference on Ubiquitous Information Management and Communication, Springer.
Zamim, S.K., Faraj, N.S., Aidan, I.A., Al-Zwainy, F.M., AbdulQader, M.A. & Mohammed, I.A., 2019, Prediction of Dust Storms in Construction Projects Using Intelligent Artificial Neural Network Technology, Periodicals of Engineering and Natural Sciences, 7(4), PP. 1659-1666.
Zhao, T.X.P., 2012, Asian Dust Detection from the Satellite Observations of Moderate Resolution Imaging Spectroradiometer (MODIS), Aerosol and Air Quality Research, 12(6), PP. 1073-1080.
Zhao, T.X.P., Ackerman, S. & Guo, W., 2010, Dust and Smoke Detection for Multi Channel Imagers, International Journal of remote sensing, 2(10), PP. 2347-2367.