Abdollahi, A., Pradhan, B., Shukla, N., Chakraborty, S. & Alamri, A., 2020a,
Deep Learning Approaches Applied to remote Sensing Datasets for Road Extraction: A State-of-the-Art Review, Remote Sensing, 12(9), P. 1444,
https://doi.org/10.1109/ ACCESS.2020.3026658.
Abdollahi, A., Pradhan, B. & Alamri, A., 2020b,
VNet: An End-to-End Fully Convolutional Neural Network for Road Extraction from High-Resolution Remote Sensing Data, IEEE Access, 8, PP. 179424-179436,
https://doi.org/10.1109/ACCESS.2020. 3026658.
Ablin, R., Sulochana, C.H. & Prabin, G., 2020,
An Investigation in Satellite Images Based on Image Enhancement Techniques, European Journal of Remote Sensing, 53(sup2), PP. 86-94,
https://doi.org/10.1080/22797254. 2019. 1673216.
Adigun, O., Olsen, P.A. & Chandra, R., 2022, Location Aware Super-Resolution for Satellite Data Fusion, IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium.
Ahmed, M.W., Saadi, S. & Ahmed, M., 2022,
Automated Road Extraction Using Reinforced Road Indices for Sentinel-2 Data, Array, 16, P. 100257,
https://doi.org/10.1016/j.array.2022.100257.
Alvarez-Vanhard, E., Corpetti, T. & Houet, T., 2021,
UAV & Satellite Synergies for Optical Remote Sensing Applications: A Literature Review, Science of Remote Sensing, 3, P. 100019,
https://doi.org/ 10.1016/j.srs.2021.100019.
Arora, S., Suman, H.K., Mathur, T., Pandey, H.M. & Tiwari, K., 2023,
Fractional Derivative Based Weighted Skip Connections for Satellite Image Road Segmentation, Neural Networks, 161, PP. 142-153,
https://doi.org/10.1016/j.neunet. 2023.01.031.
Babaali, K.O., Zigh, E., Djebbouri, M. & Kadiri, M., 2014, Survey of Some New Road Extraction Methods, The International Journal Of Engineering And Science (IJES), 3(11), PP. 28-33.
Badran, A., El-Geneidy, A. & Miranda-Moreno, L., 2024,
A Review of Techniques to Extract Road Network Features from Global Positioning System Data for Transport Modelling, Transport Reviews, 44(1), PP. 69-84,
https://doi.org/10.1080/ 01441647.2023.2229521.
Bakhtiari, H.R.R., Abdollahi, A. & Rezaeian, H., 2017, Semi Automatic Road Extraction from Digital Images, The Egyptian Journal of Remote Sensing and Space Science, 20(1), PP. 117-123, https://doi.org/10.1016/ j.ejrs.2017.03.001.
Bevilacqua, M., Roumy, A., Guillemot, C. & Alberi-Morel, M.L., 2012,
Low-Complexity Single-Image Super-Resolution Based on Nonnegative Neighbor Embedding,
https://doi.org/10.5244/C.26.135.
Blaschke, T., Burnett, C. & Pekkarinen, A., 2004, Image Segmentation Methods for Object-Based Analysis and Classification, Remote Sensing Image Analysis: Including the Spatial Domain, 5, PP. 211-236.
Botelho, J. Jr., Costa, S.C., Ribeiro, J.G. & Souza, C.M. Jr., 2022,
Mapping Roads in the Brazilian Amazon with Artificial Intelligence and Sentinel-2, Remote Sensing, 14(15), P. 3625,
https://doi.org/ 10.3390/rs14153625.
Chang, H., Yeung, D.-Y. & Xiong, Y., 2004, Super-Resolution through Neighbor Embedding, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, CVPR 200.
Chen, L., Letu, H., Fan, M., Shang, H., Tao, J., Wu, L., Zhang, Y., Yu, C., Gu, J. & Zhang, N., 2022a,
An Introduction to the Chinese High-Resolution Earth Observation System: Gaofen-1~ 7 Civilian Satellites, Journal of Remote Sensing,
https://doi.org/ 10.34133/2022/976953.
Chen, W., Ouyang, S., Yang, J., Li, X., Zhou, G. & Wang, L., 2022b,
JAGAN: A Framework for Complex Land Cover Classification Using Gaofen-5 AHSI Images, IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 15, PP. 1591-1603,
https://doi.org/ 10.1109/JSTARS.2022.3144339.
Chen, Z., Deng, L., Luo, Y., Li, D., Junior, J.M., Gonçalves, W.N., Nurunnabi, A.A.M., Li, J., Wang, C. & Li, D., 2022c,
Road Extraction in remote Sensing Data: A Survey, International Journal of Applied Earth Observation and Geoinformation, 112, P. 102833,
https://doi.org/10.1016/ j.jag.2022.102833.
Chen, Y., Xia, R., Yang, K. & Zou, K., 2023a,
MFFN: Image Super-Resolution via Multi-Level Features Fusion Network, The Visual Computer, 40, PP. 489-504,
https://doi.org/10.1007/s00371-023-02795-0.
Chen, G., Lu, H., Zou, W., Li, L., Emam, M., Chen, X., Jing, W., Wang, J. & Li, C., 2023b,
Spatiotemporal Fusion for Spectral Remote Sensing: A Statistical Analysis and Review, Journal of King Saud University-Computer and Information Sciences,
https://doi.org/ 10.1016/j.jksuci.2023.02.021.
Daihong, J., Sai, Z., Lei, D. & Yueming, D., 2022,
Multi-Scale Generative Adversarial Network for Image Super-Resolution, Soft Computing, 26(8), PP. 3631-3641,
https://doi.org/10.1007/s00500-022-06822-5.
Deepan, P., Abinaya, S., Haritha, G. & Iswarya, V., 2018, Road Recognition from Remote Sensing Imagery Using Machine Learning, International Research Journal of Engineering and Technology, 5(3), PP. 3677-3683.
Dick, A., Raynaud, J.-L., Rolland, A., Pelou, S., Coustance, S., Dedieu, G., Hagolle, O., Burochin, J.-P., Binet, R. & Moreau, A., 2022,
Venμs: Mission Characteristics, Final Evaluation of the First Phase and Data Production, Remote sensing
, (14)14, P. 3281,
https://doi.org/10.3390/rs14143281.
Dong, J., Zhuang, D., Huang, Y. & Fu, J., 2009,
Advances in Multi-Sensor Data Fusion: Algorithms and Applications, Sensors, 9(10), PP. 7771-7784,
https://doi.org/10.3390/ s91007771.
Dong, W., Zhang, L., Shi, G. & Wu, X., 2011,
Mage Deblurring and Super-Resolution by Adaptive Sparse Domain Selection and Adaptive Regularization, IEEE Transactions on Image Processing, 20(7), PP. 1838-1857,
https://doi.org/10.1109/TIP. 2011.2108306.
Dong, C., Loy, C.C., He, K. & Tang, X., 2014, Learning a Deep Convolutional Network for Image Super-Resolution, Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part IV 13.
Emad, M., Peemen, M. & Corporaal, H., 2021, Dualsr: Zero-Shot Dual Learning for Real-World Super-Resolution, Proceedings of the IEEE/CVF winter conference on applications of computer vision.
Freeman, W.T., Jones, T.R. & Pasztor, E.C., 2002,
Example-Based Super-Resolution, IEEE Computer Graphics and Applications, 22(2), PP. 56-65,
https://doi.org/10.1109/ 38.988747.
Galar Idoate, M., Sesma Redín, R., Ayala Lauroba, C. & Aranda, C., 2019,
Super-Resolution for Sentinel-2 Images, International Archives of The Photogrammetry, Remote Sensing and Spatial Information Sciences-ISPRS Archives, 2019, XLII-2/W16, PP. 95-102,
https://doi.org/ 10.5194/isprs-archives-XLII-2-W16-95-2019.
Gao, X., Zhang, K., Tao, D. & Li, X., 2012,
Image Super-Resolution with Sparse Neighbor Embedding, IEEE Transactions on Image Processing, 21(7), PP. 3194-3205,
https://doi.org/10.1109/TIP.2012.2190080.
Gao, L., Song, W., Dai, J. & Chen, Y., 2019,
Road Extraction from High-Resolution Remote Sensing Imagery Using Refined Deep Residual Convolutional Neural Network, Remote Sensing, 11(5), P. 552,
https://doi.org/10.3390/rs10091461.
Ghandorh, H., Boulila, W., Masood, S., Koubaa, A., Ahmed, F. & Ahmad, J., 2022,
Semantic Segmentation and Edge Detection—Approach to Road Detection in Very High Resolution Satellite Images, Remote Sensing, 14(3), P. 613,
https://doi.org/ 10.3390/rs14030613.
Grinias, I., Panagiotakis, C. & Tziritas, G., 2016,
MRF-Based Segmentation and Unsupervised Classification for Building and Road Detection in Peri-Urban Areas of High-Resolution Satellite Images, ISPRS Journal of Photogrammetry and Remote Sensing, 122, PP. 145-166,
https://doi.org/ 10.1016/j.isprsjprs.2016.10.010.
He, H. & Siu, W.-C., 2011, Single Image Super-Resolution Using Gaussian Process Regression, CVPR 2011, Colorado Springs, CO, USA, PP. 449-456, https://doi.org/ 10.1109/CVPR.2011.5995713.
Henry, C., Azimi, S.M. & Merkle, N., 2018, Road Segmentation in SAR Satellite Images with Deep Fully Convolutional Neural Networks, IEEE Geoscience and Remote Sensing Letters, 15(12), PP. 1867-1871.
Huang, J.-B., Singh, A. & Ahuja, N., 2015, Single Image Super-Resolution from Transformed Self-Exemplars, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, PP. 5197-5206, https://doi.org/10.1109/ CVPR.2015.7299156.
Javan, F.D., Samadzadegan, F., Mehravar, S., Toosi, A., Khatami, R. & Stein, A., 2021,
A Review of Image Fusion Techniques for Pan-Sharpening of High-Resolution Satellite Imagery, ISPRS Journal of Photogrammetry and Remote Sensing, 171, PP. 101-117,
https://doi.org/10.1016/j. isprsjprs.2020.11.001.
Jia, J., Sun, H., Jiang, C., Karila, K., Karjalainen, M., Ahokas, E., Khoramshahi, E., Hu, P., Chen, C. & Xue, T., 2021,
Review on Active and Passive Remote Sensing Techniques for Road Extraction, Remote Sensing, 13(21), P. 4235,
https://doi.org/ 10.3390/rs13214235.
Jing, J., Liu, S., Wang, G., Zhang, W. & Sun, C., 2022,
Recent Advances on Image Edge Detection: A Comprehensive Review, Neurocomputing, 503, PP. 259-271,
https://doi.org/https://doi.org/10.1016/j.neucom.2022.06.083.
Jozdani, S.E., Johnson, B.A. & Chen, D., 2019,
Comparing Deep Neural Networks, Ensemble Classifiers, and Support Vector Machine Algorithms for Object-Based Urban Land Use/Land Cover Classification, Remote Sensing, 11(14), P. 1713,
https://doi.org/10.3390/rs11141713.
Jurado, J.M., López, A., Pádua, L. & Sousa, J.J., 2022,
Remote Sensing Image Fusion on 3D Scenarios: A Review of Applications for Agriculture and Forestry, International Journal of Applied Earth Observation and Geoinformation, 112, P. 102856,
https://doi.org/10.1016/j.jag.2022. 102856.
Kahraman, I., Karas, I. & Akay, A.E., 2018,
Road Extraction Techniques from Remote Sensing Images: A Review, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, PP. 339-342,
https://doi.org/10.5194/isprs-archives-XLII-4-W9-339-2018.
Kiani, A. & Ebadi, H., 2015,
Development of a New Method for Edge Detection from High-Resolution Aerial/Satellite Images, with Emphasis on Threshold Optimization and Using Imperialist Competitive Algorithm [Research], Journal of Geomatics Science and Technology, 4(4), PP. 67-82,
https://doi.org/ http://jgst.issgeac.ir/article-1-308-en.html.
Kiani, A. & Sahebi, M.R., 2015,
Edge Detection Based on the Shannon Entropy by Piecewise Thresholding on Remote Sensing Images, IET Computer Vision, 9(5), PP. 758-768,
https://doi.org/10.1049/ iet-cvi.2013.0192.
Kiani, A., Ebadi, H. & Farnood Ahmadi, F., 2019a,
Development of An Object-Based Interpretive System Based on Weighted Scoring Method in a Multi-Scale Manner, ISPRS International Journal of Geo-Information, 8(9), P. 398,
https://doi.org/ 10.3390/ijgi8090398.
Kiani, A., Ebadi, H. & Khanlou, H.A., 2019b,
Object Based Interpretation of High Spatial Remote Sensing Images Based on Knowledge-Based Systems, Iranian Journal of Remote Sensing & GIS, 10(4), PP. 27-54,
https://gisj.sbu.ac.ir/article_96622_bf8570bd278dd917e7ffa46f870cfc82.pdf.
Kim, K.I. & Kwon, Y., 2010,
Single-Image Super-Resolution Using Sparse Regression and Natural Image Prior, IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(6), PP. 1127-1133,
https://doi.org/10.1109/TPAMI.2010.25.
Kim, J., Lee, J.K. & Lee, K.M., 2016, Accurate Image Super-Resolution Using Very Deep Convolutional Networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, https://doi.org/ 10.48550/arXiv.1511.04587.
Kim, G., Park, J., Lee, K., Lee, J., Min, J., Lee, B., Han, D.K. & Ko, H., 2020, Unsupervised Real-World Super Resolution with Cycle Generative Adversarial Network and Domain Discriminator, IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 2020, PP. 1862-1871, https://doi.org/ 10.1109/CVPRW50498.2020.00236.
Köhler, S., Wojcik, M., Xu, K. & Dernburg, A.F., 2020,
Dynamic Molecular Architecture of the Synaptonemal Complex, BioRxiv,
https://doi.org/10.1101/ 2020.02.16.947804 .
Lan, R., Sun, L., Liu, Z., Lu, H., Pang, C. & Luo, X., 2020,
MADNet: A Fast and Lightweight Network for Single-Image Super Resolution, IEEE Transactions on Cybernetics, 51(3), PP. 1443-1453,
https://doi.org/10.1109/TCYB.2020.2970104 .
Lanaras, C., Bioucas-Dias, J., Galliani, S., Baltsavias, E. & Schindler, K., 2018,
Super-Resolution of Sentinel-2 Images: Learning a Globally Applicable Deep Neural Network, ISPRS Journal of Photogrammetry and Remote Sensing, 146, PP. 305-319,
https://doi.org/10.1016/ j.isprsjprs.2018.09.018.
Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J. & Wang, Z., 2017, Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, PP. 105-114, https://doi.org/10.1109/CVPR.2017.19.
Li, S., Kang, X., Fang, L., Hu, J. & Yin, H., 2017,
Pixel-Level Image Fusion: A Survey of the State of the Art, Information Fusion, 33, PP. 100-112,
https://doi.org/ 10.1016/j.inffus.2016.05.004.
Li, J., Li, Y., He, L., Chen, J. & Plaza, A., 2020,
Spatio-Temporal Fusion for Remote Sensing Data: An Overview and New Benchmark, Science China Information Sciences, 63, PP. 1-17,
https://doi.org/ 10.1007/s11432-019-2785-y.
Lian, R., Wang, W., Mustafa, N. & Huang, L., 2020,
Road Extraction Methods in High-Resolution Remote Sensing Images: A Comprehensive Review, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, PP. 5489-5507,
https://doi.org/ 10.1109/ JSTARS.2020.3023549.
Lim, B., Son, S., Kim, H., Nah, S. & Mu Lee, K., 2017, Enhanced Deep Residual Networks for Single Image Super-Resolution, IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, PP. 1132-1140, https://doi.org/ 10.1109/CVPRW.2017.151.
Liu, W. & Wang, H., 2008,
An Interactive Image Segmentation Method Based on Graph Theory, J. Electron. Inf. Technol, 8(30), PP. 1973-1976,
https://doi.org/ 10.3390/s23146394.
Liu, Y., Yao, J., Lu, X., Xia, M., Wang, X. & Liu, Y., 2018,
RoadNet: Learning to Comprehensively Analyze Road Networks in Complex Urban Scenes from High-Resolution Remotely Sensed Images, IEEE Transactions on Geoscience and Remote Sensing, 57(4), PP. 2043-2056,
https://doi.org/10.1109/TGRS.2018.2870871.
Liu, P., Wang, Q., Yang, G., Li, L. & Zhang, H., 2022,
Survey of Road Extraction Methods in Remote Sensing Images Based on Deep Learning, PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 90(2), PP. 135-159,
https://doi.org/10.1007/ s41064-022-00194-z.
Liu, R., Wu, J., Lu, W., Miao, Q., Zhang, H., Liu, X., Lu, Z. & Li, L., 2024,
A Review of Deep Learning-Based Methods for Road Extraction from High-Resolution Remote Sensing Images, Remote Sensing, 16(12), P. 2056,
https://doi.org/10.3390/rs16122056.
Luo, Z., Zhou, K., Tan, Y., Wang, X., Zhu, R. & Zhang, L., 2023,
AD-RoadNet: An Auxiliary-Decoding Road Extraction Network Improving Connectivity While Preserving Multiscale Road Details, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
https://doi.org/10.1109/JSTARS.2023.3289583.
Martin, D., Fowlkes, C., Tal, D. & Malik, J., 2001, A Database of Human Segmented Natural Images and Its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics, Proceedings Eighth IEEE International Conference on Computer Vision, ICCV 2001.
Masek, J.G., Wulder, M.A., Markham, B., McCorkel, J., Crawford, C.J., Storey, J. & Jenstrom, D.T., 2020,
Landsat 9: Empowering Open Science and Applications through Continuity, Remote Sensing of
Environment, 248, P. 111968,
https://doi.org/10.1016/j.rse.2020.111968.
Matsui, Y., Ito, K., Aramaki, Y., Fujimoto, A., Ogawa, T., Yamasaki, T. & Aizawa, K., 2017,
Sketch-Based Manga Retrieval Using Manga109 Dataset, Multimedia Tools and Applications, 76, PP. 21811-21838,
https://doi.org/10.48550/arXiv. 1510.04389.
Michel, J., Vinasco-Salinas, J., Inglada, J. & Hagolle, O., 2022, SEN2VENµS, a Dataset for the Training of Sentinel-2 Super-Resolution Algorithms, Data, 7(7), P. 96, https://doi.org/10.3390/data7070096.
Mnih, V., 2013, Machine Learning for Aerial Image Labeling, University of Toronto (Canada).
Patnaik, A., Bhuyan, M. & MacDorman, K.F., 2024,
A Two-Branch Multi-Scale Residual Attention Network for Single Image Super-Resolution in Remote Sensing Imagery, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
https://doi.org/10.1109/ JSTARS.2024.3371710.
Pohl, C. & Van Genderen, J.L., 1998,
Review Article Multisensor Image Fusion in Remote Sensing: Concepts, Methods and Applications, International Journal of Remote Sensing, 19(5), PP. 823-854,
https://doi.org/10.1080/014311698215748.
Polatkan, G., Zhou, M., Carin, L., Blei, D. & Daubechies, I., 2014,
A Bayesian Nonparametric Approach to Image Super-Resolution, IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(2), PP. 346-358,
https://doi.org/10.1109/ TPAMI.2014.2321404.
Pruthi, J. & Dhingra, S., 2023, A Review of Research on Road Feature Extraction Through Remote Sensing Images Based on Deep Learning Algorithms, 3rd International Conference on Innovative Sustainable Computational Technologies (CISCT), 8-9th Sept., https://doi.org/ 10.1109/CISCT57197.2023.10351299.
Purkait, P. & Chanda, B., 2013, Image Upscaling Using Multiple Dictionaries of Natural Image Patches, Asian Conference on Computer Vision, https://doi.org/ 10.1007/978-3-642-37431-9_22.
Reddy, S.L.K., Rao, C.V., Kumar, P.R., Anjaneyulu, R.V.G. & Bothale, V.M., 2019, Automatic Road Feature Extraction Using MRF from LANDSAT-8 OLI Images, 2019 IEEE Recent Advances in Geoscience and Remote Sensing: Technologies, Standards and Applications (TENGARSS), Kochi, India, 2019, PP. 15-20, https://doi.org/10.1109/TENGARSS48957.2019.8976046.
Sahu, D.K. & Parsai, M., 2012, Different Image Fusion Techniques–A Critical Review, International Journal of Modern Engineering Research (IJMER), 2(5), PP. 4298-4301.
Shahi, K., Shafri, H.Z., Taherzadeh, E., Mansor, S. & Muniandy, R., 2015,
A Novel Spectral Index to Automatically Extract Road Networks from WorldView-2 Satellite Imagery, The Egyptian Journal of Remote Sensing and Space Science, 18(1), PP. 27-33,
https://doi.org/10.1016/j.ejrs.2014.12.003.
Shao, Z., Zhou, Z., Huang, X. & Zhang, Y., 2021,
MRENet: Simultaneous Extraction of Road Surface and Road Centerline in Complex Urban Scenes from Very High-Resolution Images, Remote Sensing, 13(2), P. 239,
https://doi.org/10.3390/rs13020239.
Singh, P.P. & Garg, R.D., 2014,
Road Detection from Remote Sensing Images Using Impervious Surface Characteristics: Review and Implication, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40, PP. 955-959,
https://doi.org/10.5194/ isprsarchives-XL-8-955-2014.
Singh, S., Mittal, N. & Singh, H., 2021,
Review of Various Image Fusion Algorithms and Image Fusion Performance Metric, Archives of Computational Methods in Engineering, 28, PP. 3645-3659,
https://doi.org/10.1007/s11831-020-09518-x.
Singh, S., Singh, H., Bueno, G., Deniz, O., Singh, S., Monga, H., Hrisheekesha, P. & Pedraza, A., 2023,
A Review of Image Fusion: Methods, Applications and Performance Metrics, Digital Signal Processing, 137, P. 104020,
https://doi.org/ 10.1016/j.dsp.2023.104020.
Sonka, M., Hlavac, V. & Boyle, R., 2014, Image Processing, Analysis, and Machine Vision, Cengage Learning.
Soufi, O. & Belouadha, F.Z., 2023,
FSRSI: New Deep Learning-Based Approach for Super-Resolution of Multispectral Satellite Images, Ingenierie des Systemes d'Information, 28(1), P. 113,
https://doi.org/ 10.18280/isi.280112.
Spoto, F., Sy, O., Laberinti, P., Martimort, P., Fernandez, V., Colin, O., Hoersch, B. & Meygret, A., 2012, Overview of Sentinel-2, IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, PP. 1707-1710, https://doi.org/10.1109/ IGARSS.2012.6351195.
Sun, J., Xu, Z. & Shum, H.-Y., 2008, Image Super-Resolution Using Gradient Profile Prior, IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, PP. 1-8, https://doi.org/10.1109/CVPR. 2008.4587659.
Tao, C., Qi, J., Li, Y., Wang, H. & Li, H., 2019,
Spatial Information Inference Net: Road Extraction Using Road-Specific Contextual Information, ISPRS Journal of Photogrammetry and Remote Sensing, 158, PP. 155-166,
https://doi.org/10.1016/ j.isprsjprs.2019.10.001.
Timofte, R., De Smet, V. & Van Gool, L., 2013, Anchored Neighborhood Regression for Fast Example-Based Super-Resolution, 2013 IEEE International Conference on Computer Vision, Sydney, NSW, Australia, PP. 1920-1927, https://doi.org/10.1109/ICCV. 2013.241.
Timofte, R., Agustsson, E., Van Gool, L., Yang, M.-H. & Zhang, L., 2017, Ntire 2017 Challenge on Single Image Super-Resolution: Methods and Results, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, PP. 1110-1121, https://doi.org/10.1109/CVPRW.2017.149.
Versaci, M. & Morabito, F.C., 2021,
Image Edge Detection: A New Approach Based on Fuzzy Entropy and Fuzzy Divergence, International Journal of Fuzzy Systems, 23(4), PP. 918-936,
https://doi.org/10.1007 /s40815-020-01030-5.
Wang, W., Yang, N., Zhang, Y., Wang, F., Cao, T. & Eklund, P., 2016,
A Review of Road Extraction from Remote Sensing Images, Journal of Traffic and Transportation Engineering (English Ed.), 3(3), PP. 271-282,
https://doi.org/10.1016/j.jtte.2016.05.005.
Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Qiao, Y. & Change Loy, C., 2018, Esrgan: Enhanced Super-Resolution Generative Adversarial Networks, Proceedings of the European Conference on Computer Vision (ECCV) Workshops.
Wei, Y., Zhang, K. & Ji, S., 2019, Road Network Extraction from Satellite Images Using CNN Based Segmentation and Tracing, IGARSS 2019, IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, PP. 3923-3926, https://doi.org/10.1109/ IGARSS.2019.8898565.
Winiwarter, L., Coops, N.C., Bastyr, A., Roussel, J.-R., Zhao, D.Q., Lamb, C.T. & Ford, A.T., 2024,
Extraction of Forest Road Information from CubeSat Imagery Using Convolutional Neural Networks, Remote Sensing, 16(6), P. 1083,
https://doi.org/10.3390/rs16061083.
Xia, G.-S., Hu, J., Hu, F., Shi, B., Bai, X., Zhong, Y., Zhang, L. & Lu, X., 2017,
AID: A Benchmark Data Set for Performance Evaluation of Aerial Scene Classification, IEEE Transactions on Geoscience and Remote Sensing, 55(7), PP. 3965-3981,
https://doi.org/10.1109/TGRS.2017.2685945.
Xie, J., Xu, L. & Chen, E., 2012, Image Denoising and Inpainting with Deep Neural Networks, NIPS'12: Proceedings of the 26th International Conference on Neural Information Processing Systems, 1, PP. 341-343, https://dl.acm.org/doi/10.5555/ 2999134.2999173.
Yang, J., Wright, J., Huang, T.S. & Ma, Y., 2010,
Image Super-Resolution via Sparse Representation,
IEEE Transactions on Image Processing, 19(11), PP. 2861-2873,
https://doi.org/10.1109/TIP.2010.2050625.
Yanuargi, B. & Utami, E., 2022,
Convolutional Neural Network for Road Network Detections Using Sentinel 2A, International Journal of Innovative Science and Research Technology, 7(12), PP. 463-468,
https://doi.org/10.5281/zenodo.7487943.
Ye, W., Lin, B., Lao, J., Liu, Y. & Lin, Z., 2024,
MRA-IDN: A Lightweight Super-Resolution Framework of Remote Sensing Images Based on Multi-Scale Residual Attention Fusion Mechanism, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 17, PP. 7781-7800,
https://doi.org/10.1109/JSTARS. 2024.3381653.
Zeyde, R., Elad, M. & Protter, M., 2012, On Single Image Scale-Up Using Sparse-Representations, Curves and Surfaces: 7th International Conference, Avignon, France, June 24-30, Revised Selected Papers 7, https://doi.org/10.1007/978-3-642-27413-8_47.
Zhang, Y., 2008, Methods for Image Fusion Quality Assessment-A Review, Comparison and Analysis, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(PART B7), 1101-1109.
Zhang, K., Gao, X., Tao, D. & Li, X., 2012,
Single Image Super-Resolution with Non-Local Means and Steering Kernel Regression, IEEE Transactions on Image Processing, 21(11), PP. 4544-4556,
https://doi.org/10.1109/TIP.2012.2208977.
Zhang, Z., Liu, Q. & Wang, Y., 2018, Road Extraction by Deep Residual U-Net, IEEE Geoscience and Remote Sensing Letters, 15(5), PP. 749-753.
Zhang, Q., Kong, Q., Zhang, C., You, S., Wei, H., Sun, R. & Li, L., 2019a, A New Road Extraction Method Using Sentinel-1 SAR Images Based on the Deep Fully Convolutional Neural Network, European Journal of Remote Sensing, 52(1), PP. 572-582, https://doi.org/10.1080/22797254.2019. 1694447.
Zhang, C., Wei, S., Ji, S. & Lu, M., 2019b,
Detecting Large-Scale Urban Land Cover Changes from Very High Resolution Remote Sensing Images Using CNN-Based Classification, ISPRS International Journal of Geo-Information, 8(4), P. 189,
https://doi.org/10.3390/ijgi8040189.
Zhang, K., Sumbul, G. & Demir, B., 2020, An Approach to Super-Resolution of Sentinel-2 Images Based on Generative Adversarial Networks, Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS), Tunis, Tunisia, 2020, PP. 69-72, https://doi.org/ 10.1109/M2GARSS47143.2020.9105165.
Zhang, T., Su, J., Xu, Z., Luo, Y. & Li, J., 2021,
Sentinel-2 Satellite Imagery for Urban Land Cover Classification by Optimized Random Forest Classifier, Applied Sciences, 11(2), P. 543,
https://doi.org/ 10.3390/app11020543.
Zhang, Y., Dong, L., Yang, H., Qing, L., He, X. & Chen, H., 2022,
Weakly-Supervised Contrastive Learning-Based Implicit Degradation Modeling for Blind Image Super-Resolution, Knowledge-Based Systems, 249, P. 108984,
https://doi.org/ 10.1016/j.knosys.2022.108984.
Zhang, Y., Zhang, L., Wang, Y. & Xu, W., 2024a,
AGF-Net: Adaptive Global Feature Fusion Network for Road Extraction from Remote-Sensing Images, Complex & Intelligent Systems, 10, PP. 4311-4328,
https://doi.org/10.1007/ s40747-024-01364-9.
Zhang, W., Tan, Z., Lv, Q., Li, J., Zhu, B. & Liu, Y., 2024b,
An Efficient Hybrid CNN-Transformer Approach for Remote Sensing Super-Resolution, Remote Sensing, 16(5), P. 880,
https://doi.org/ 10.3390/rs16050880.
Zhao, N., Wei, Q., Basarab, A., Dobigeon, N., Kouame, D. & Tourneret, J.-Y., 2015,
Fast Single Image Super-Resolution, arXiv preprint arXiv:1510.00143,
https://doi.org/ 10.1109/TIP.2016.2567075.
Zhu, X., Cai, F., Tian, J. & Williams, T.K.-A., 2018,
Spatiotemporal Fusion of Multisource Remote Sensing Data: Literature Survey, Taxonomy, Principles, Applications, and Future Directions, Remote Sensing, 10(4), P. 527,
https://doi.org/ 10.3390/rs10040527.
Zhu, Q., Zhang, Y., Wang, L., Zhong, Y., Guan, Q., Lu, X., Zhang, L. & Li, D., 2021,
A Global Context-Aware and Batch-Independent Network for Road Extraction from VHR Satellite Imagery, ISPRS Journal of Photogrammetry and Remote Sensing, 175, PP. 353-365,
https://doi.org/ 10.1016/j.isprsjprs. 2021.03.016.
Zhu, X., Huang, X., Cao, W., Yang, X., Zhou, Y. & Wang, S., 2024,
Road Extraction from Remote Sensing Imagery with Spatial Attention Based on Swin Transformer, Remote Sensing, 16(7), P. 1183,
https://doi.org/10.3390/rs16071183.
Zou, Q., Ni, L., Zhang, T. & Wang, Q., 2015, D
eep Learning Based Feature Selection for Remote Sensing Scene Classification, IEEE Geoscience and Remote Sensing Letters, 12(11), PP. 2321-2325,
https://doi.org/10.1109/LGRS.2015.2475299.