Effect of climatic zoning and altitude zoning on the correlation of remote sensing drought indices with Precipitation data and Introducing local indicators

Document Type : علمی - پژوهشی

Authors

1 M.Sc. Student Faculty of Engineering and Engineering - Department of Surveying - University of Isfahan

2 Aassociated Professor, Department of Engineering, Department of Surveying, University of Isfahan

Abstract

Drought is an important phenomenon which can be monitored based on weather data obtained from weather stations and remote sensing data. Remote sensing methods have offered significant relative advantages compared to the other methods for monitoring drought . Also , several drought indicators have provided in remote sensing for monitoring drought , but none of the common indicators in remote sensing did not have generalizability of time , climate and altitude and it is necessary the performance quality of these indexes 1) in climates, 2) in altitudinal zoning examined .This study also proved this hypothesis , to identify appropriate indicators in every altitudinal zone , and in every region the index considered the appropriate season to evaluate indexes . In this study , drought indices ,VCI ,VDI ,TCI and TVDI by LST parameter , NDVI and EVI have been evaluated. To evaluate climate and altitudinal indicators , first in the whole country and then in Hamadan province , climate and altitudinal zoning done and drought indexes for different climates and altitude was determined in two forms pixel-based and object-based (polygons) and compared to precipitation data TRMM sensors . The operation of drought indexes were analyzed to drought evaluation by taking account climate type , data acquisition season , altitude and area . The results of this research shows lack of generalizability of all indictors in terms of climate , altitude and time indicators and for example , in pixel evaluating of hot and dry climate , the highest correlation between VCI index and precipitation data was in June and the lowest correlation is in December.

Keywords


  1. جوادنیا، اسلام، محمدرضا، مباشری، 1387، بررسی روشهای ارزیابی خشکسالی کشاورزی با استفاده از تکنیکهای سنجش از دوری، گروه مهندسی سنجش از دور، دانشگاه صنعتی خواجه نصیر الدین طوسی، تهران، خیابان ولی عصر، تقاطع میرداماد.
  2. نوری، سمیرا، سید حسین، ثنایی‌نژاد، 1392، بررسی خشکسالی با استفاده از شاخص‌های خشکی دما-گیاه (TVDI) و دما-گیاه اصلاح شده (MTVDI) و تصاویر سنجنده مودیس، نشریه آب و خاک (علوم و صنایع کشاورزی)، شماره 4، صص. 753-762.
  3. Brede, B.,Verbesselt, J., Dutrieux L.P. & Herold M., 2015, Performance of the Enhanced Vegetation Index to Detect Inner-Annual Dry Season and Drought Impacts on Amazon Forest Canopies, The International Archived of the photogrammetry, Remote Sensing and spatial Information Sciences, 40 (7): 337
  4. Dutta, D., Kundu, A., Patel, N.R., Saha, S.K., Siddiqui, A.R., 2015, Assessment of agricultural drought in Rajasthan (India) using remote sensing derived Vegetation Condition Index (VCI) and Standardized Precipitation Index (SPI), The Egyptian Journal of Remote Sensing and Space Sciences, 63-53 :18
  5. Gao, Z., Gao, W., Chang, N.B., 2010, Integrating Temperature Vegetation Dryness Index (TVDI) and Regional Water Stress Index (RWSI) for Drought Assessment with the Aid of LANDSAT TM/ETM+ Images, International Journal of Applied Earth Observation and Geo Information, 13:495-503
  6. Goetz, S.J., 1997, Multi-Sensor Analysis of NDVI, Surface Temperature and Biophysical Variables at a Mixed Grassland Site, International Journal of Remote Sensing, 18 (1), 94-71
  7. Huang, L.S., Guan, Q.S., Dong, Y.S., Zhang, D.Y., Huang, W.J., Liang, D., 2012, Using Temperature Vegetation Drought Index for Monitoring Drought Based on Remote Sensing Data, In Advanced Materials Research, 356: 2854-2859
  8. Khalil, A.A., Abdel-Wahab, M.M., Hassanein, M.K., Ouldbdey B., Katlan, B., Essa, Y.H. 2013, Drought Monitoring over Egypt by Using MODIS Land Surface Temperature and Normalized Difference Vegetation Index, Nature and Science, 11 (11): 116-122
  9. Kogan, N., 1995, Droughts of the Late 1980s in the United States as Derived from NOAA Polar-Orbiting Satellite Data, Bulletin of the American Meteorological Society, 76 (5): 655-668
  10. Kogan, N., 1997, Global Drought Watch From Space, Bulletin of the American Meteorological Society, 78 (4): 621-636
  11. Linsheng, H., Yansheng, D., Dongyan, Z., Wenjiang, H., Dong, L., 2012, Using Temperature Vegetation Drought Index for Monitoring Drought Based on Remote Sensing Data, Trans Tech Publications Switzerland, 356: 2854-2859
  12. Maki, M., Ishiahra, M., Tamura, M., 2004, Estimation of Leaf Water Status to Monitor the Risk of Forest Fires by Using Remotely Sensed Data, Remote Sensing of Environment, 90 (4): 441–450
  13. Moran, M.S., Clarke, T.R., Inoue, Y., Vidal, A., 1994, Estimating Crop Water-Deficit Using the Relation Between Surface-Air Temperature and Spectral Vegetation Index, Remote Sensing of Environment, 49 (3): 246-263
  14. Rahimzadeh-bajgiran, P., Darvishsefat, A., Khalili, A., Makhdom A., 2008, Using AVHRR-Based Vegetation Indices for Drought Monitoring in the Northwest of Iran, Journal of Arid Environ, 72: 1086-1096
  15. Rahimzadeh-Bajgiran, P., Kenji, O. & Yo, S., 2012, Comparative Evaluation of the Vegetation Dryness Index (VDI), the Temperature Vegetation Dryness Index (TVDI) and the Improved TVDI (iTVDI) for Water Stress Detection in Semi-Arid Regions of Iran”, ISPRS Journal of Photogrammetry and Remote Sensing 68: 1–12
  16. Rezaei-Moghadam, M.H., Valizadeh-Kamran K., Rostamzadeh, H., Rezaei, A. 2014, Assessing the Efficiency of Vegetation Indicators for Estimating Agricultural Drought Using MODIS Sensor Images (Case Study: Sharghi Azerbaijan Province), International Journal of Advanced Biological and Biomedical Research, 2: 399-407
  17. Sandholt, I., Rasmussen, K., Andersen, J., 2002, A Simple Interpretation of the Surface Temperature/Vegetation Index Space for Assessment of Surface Moisture Status, Remote Sensing of environment, 79 (2): 213-224
  18. Sruthi, S.,Mohammed Aslam, M.A., 2015, Agricultural Drought Analysis Using the NDVI and Land Surface Temperature Data: a Case Study of Raichur District, International Conference on Water Resources Coastal and Engineering, 4: 1258-1264
  19. Yuan, L., Heping, T., Hua, W., 2007, Dynamic Drought Monitoring in Guangxi Using Revised Temperature Vegetation Dryness Index, Wuhan University Journal of Natural Sciences, 12 (4): 663-668
  20. Zarei R., Sarajian, M., Bazgeer, S., 2013, Monitoring Meteorological Drought in Iran Using Remote Sensing and Drought, Indices journal of DESERT 18: 89-97