Spectral analysis and enhancement of Sureyan complex lithological units, northeastern of Fars, using satellite imagery data of ASTER and Sentinel 2

Document Type : علمی - پژوهشی

Authors

1 Professor of Earth Sciences, Shiraz University

2 Department of Earth Science, Factuly of Sciences, Shiraz University,

Abstract

The specific capabilities of satellite data in providing information from the Earth surface materials provide a possibility for producing the geological maps, and in this regard, the spatial and spectral resolutions of the utilized data are two fundamental characteristics in determining the precision and accuracy of the maps.  In this research, the data sets of ASTER and Sentinel 2, due to their high spatial and spectral resolutions, were used to enhance the lithological units of the Sureyan complex, northeastern Fars. The metamorphosed sedimentary-volcanic complex of Sureyan is part of the Southern Sanandaj- Sirjan Belt, in Bavanat, Fars province. Investigating the spectral features of field samples, measured at the Shahid Chamran University of Ahvaz, and the spectra extracted from the imageries indicated that the main functional groups responsible for spectral features were Fe2+,   Fe3+, OH, CO3, Al-OH, Mg-OH, and Fe-OH. Based on the mineralogical studies, these groups could be attributed to the occurrences of chlorite, muscovite, epidote, amphibole, calcite, and hematite, which were approved by studies of microscopic thin sections. The band ratios (6+8)/7, (7+5)/6, and (6+9)/(7+8) were conducted on 9 reflection bands of ASTER, and the principal components analysis, on 9 reflection bands of ASTER and Sentinel-2. These processing methods were successful in discriminating the chlorite-epidote schist, calk-schist, mica-schist, and the basalt and quartzite dykes as well. Comparing the results of this study to the field observations and the results obtained by laboratory investigations revealed that simultaneous use of ASTER and Sentinel-2 data and the applied processing methods could be successful in discriminating the lithological units of a  metamorphic-sedimentary-volcanic complex.

Keywords


  1. سازمان صنایع و معادن استان فارس 1381، گزارش پروژه اکتشاف مس ماسیوسولفید تیپ بوانات در شهرستان بوانات، مهندسان مشاور معدنکار. شماره گزارش AM1487010. صفحه 1 تا 308.
  2. اخوت، 1378، طرح اکتشاف مواد معدنی با استفاده از داده‌های ماهواره‌ای و ژئوفیزیک هوایی و مطالعات دورسنجی ورقه 1:100000 سوریان با استفاده از سنجنده TM، سازمان صنایع و معادن استان فارس.
  3. Alvaro, P., Crosta, Charles Sabine and James, V., Taranik., 1998, Hydrothermal Alteration Mapping at Bodie, Califor-nia, Using AVIRIS Hyperspectral Data, Geosciences Institute, State University of Campinas, Campinas, SP, Brazil, 65:309–319.
  4. Amer, R., Kusky, T. & Ghulam, A., 2010, Lithological mapping in the central eastern desert of Egypt using ASTER data, Journal African Earth Sciences. 56, 75e82.
  5. Crosta, A.P. and Moore, J. M. C. M., 1989, Enhancement of Landsat thematic mapper imagery for residual soil mapping in SW Minas Gerais State Brazil: a prospecting case history in greenstone belt terrain. In: Wolfe, W. L., & ZISSIS, G. L. (eds.) proceeding of the 9th thematic conference on Remote Sensing for Exploration Geology, Calagary: 1173-1187.
  6. Hushmandzadeh, A, M., 1966, Geology of Eqlid distric southern part (Sureyan area, Fars Province), Geological Survey of G.S.I, Tehran, G10. (in Persian)
  7. Morel, M. & Gentili, B., 2009, A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data, Remote Sensing of Environment 113, 998–1011.
  8. Mousivand, F., 2003, Mineralogy, geochemistry and genesis of copper mineralization in the Sureyan volcano–sedimentary complex, Bavanat area, Fars Province. M.Sc. Thesis, Tarbiat Modares University, Iran, 300 p. in Persian with English abstract.
  9. Oveisi, B., 2001, Geological map of Sureyan, scale 1: 100,000. Geological Survey of Iran, map no. 6750. (in Persian)
  10. Mousivand, F. & Rastad, E. 2007, The Bavanat Cu-Zn-Ag orebody: First recognition of a BESSHI-type VMS deposit in Iran”.
  11. Gupta, R.P., 2003, Remote sensing geology; second edition, Springer; Berlin, 556 pp.
  12. Gupta, R.P., 2017, Remote sensing geology; third edition, Springer; Berlin, 428 pp.
  13. Abrams. A., Hook. S., 2000, ASTER user’s handbook, version 2, jet propulsion laboratory, 4800 oak grove Dr. Pasadena, C A 91109, bhaskar Ramachandran, EROS data center Sioux falls, SD 57198.
  14. Cazaubiel, V., Chorvalli, V., & Miesch, C., 2008, The Multi-Spectral Instrument of the Sentinel-2 programme, Proc. 7th Int. Conf. Space Optics (ICSO 2008).
  15. Baret, F., Hagolle, O., Geiger, B., Bicheron, P., Miras, B., Huc, M., Berthelot, B., Nino, F., Weiss, M., Samain, O., Roujean, J.L., & Leroy, M., 2007, LAI, f APAR and f COVER CYCLOPES global products derived from VEGETATION, Part 1: Principles of the algorithm. Rem. Sens. Env. 110(3), 275–286.
  16. Bernstein, L., Adler-Golden, S. M., 2005, Validation of the QUICK Atmospheric Correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery, SPIE Proceedings, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultra-Spectral Imagery XI. Vol. 5806, pp. 668-678.
  17. Vander Meer, F.D.; van der Werff, H. M. A.; van Ruitenbeek, F.J.A. Potential of ESA’s Sentinel-2. 2014, 148, 124. 133.
  18. Cudahy, T; Hewson, R. ASTER geological case histories: Porphyry-skarn- epithermal, iron oxide Cu-Auand Broken Hill Pb-Zn-Ag, In Proceedings of the Annual General Meeting of the Geological Remote Sensing Group (ASTER Unveiled), London, UK, 5–7 December 2002.
  19. Mielke, C.; Boesche, N.; Rogass, C.; Kaufmann, H.; Gauert, C.; de Wit, M. Spaceborne mine waste mineralogy monitoring in South Africa, applica-tions for modern push-broom missions: Hyperion/OLI and EnMAP/ Sentinel-2. Remote Sens. 2014, 6, 6790–6816.
  20. Li, P.J., Long, X.Y., Liu,L., 2007, Ophiolite mapping using ASTER data: A case study of Derni ophiolite complex, Acta Petrologica Sinica23, 1175-1180.
  21. Qiu, F. Abdelsalam, M., Thakkar, P.,2006, Spectral analysis of ASTER data covering part of the Neoproterozoic Allaqi-Heiani suture, Southern Egypt, Journal of African Earth Aciences 44, 169-180.
  22. Rowan, L.C., Mars, J.C. 2003, Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sensing Environ. 84, 350–366.
  23. Gomes, C., Delacourt, C., Allemand, P., Ledru, P., Wackerle, R., 2005, Using ASTER remote sensing data set for geological mapping, in Namibia, Physics and Chemistry of the Earth 30,97-108.
  24. Khan, S. D., Mahmood, K., Casey, J. F., 2007, Mapping of Muslim Bagh ophiolite complex (Pakistan) using new remote sensing, and field data, Journal of Asian Earth Sciences 30,333-343.
  25. Massironi, M., Bertoldi, L., Calafa, P., Visona, D., Bistacchi, A., Giardino, C., Schiavo, A., 2008, Interpretation and processing of ASTER data for geological mapping and granitoids detection in the Saghro massif (eastern Anti- Atlas, Morocco), Geosphere 4, 736-759.
  26. Watts, D. R., Harris, N. B. W., Grp, N. G. S. W., 2005, Mapping granite and gneiss in domes along the North Himalayan antiform with ASTER SWIR band ratios, Geological Society of America Bulletin 117, 879-886.
  27. Qari, M.H.T., Madani, A. A., Matsah, M.I.M., Hamimi, Z., 2008, Utilization of ASTER and Landsat data in geologic mapping of basement rocks of Arafat Area, Saudi Arabia, Arabian Journal for Science and Engineering 33, 99-116.
  28. Vaughan, R. G., Hook, S. J., Calvin, W. M., Taranik, J. V., 2005, Surface mineral mapping at Steamboat Springs, Nevada, USA, with multi-wavelength thermal infrared images, Remote Sensing of Environment 99, 140-158.
  29. Gad, S., Kusky, T., 2007, ASTER spectral ratioing for lithological mapping in the Arabian- Nubian shield, the neoproterozoic Wadi Kid area, Sinai, Egypt, Gondwana Research 11, 326-335.
  30. Rajendran, S., & Nasir, S. 2014, Mapping of high pressure Metamorphic in the as SIFAH region, NE Oman using ASTER data. Al-KHOD, 123 Muscat, Oman. Adv. Space Res.
  31. Doublier, M.P., Roache, A., and Potel, S., 2010, Application of SWIR spec-troscopy in very low grade metamor-phic environments: a comparison with XRD methods: Geological Survey of Western Australia Record 2010/7, 61 p.
  32. Bishop, J. L., et al. 2008, Phyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars, Science, 321, 830–833.
  33. Hunt, G.R. and Salisbury, J.W., 1970, Visible and Near-Infrared Spectra of Minerals and Rocks. I. Silicate Minerals, Modern Geology, 1, 283-300.
  34. Hunt, G. R., & Salisbury, J. W., 1971, Visible and near-infared spectra of minerals and rocks: II. Carbonates, Modern Geology, 2, 23–30.
  35. Guidotti, C.V., Cheney, J.T., and Henry, D.J., 1988, Compositional variation of biotite as a function of metamorphic reactions and mineral assemblage in the pelitic schists of western Maine, American Journal of Science, Wones Memorial Volume, 288A, 270–292.
  36. Singh, A & Harrison, 1985, Staandardized principal components, International Journal of Remote Sensing. 6 (6). 883-896.