Acquarelli, J., Marchiori, E., Buydens, L.M.C., Tran, T. & Laarhoven, T.V., 2018,
Spectral-Spatial Classification of Hyperspectral Images: Three Tricks and a New Learning Setting, Remote Sens., 10.
https://doi.org/ 10.3390/rs10071156.
Ahmad, M., Shabbir, S., Roy, S.K., Hong, D., Wu, X., Yao, J., Khan, A.M., Mazzara, M., Distefano, S. & Chanussot, J., 2022,
Hyperspectral Image Classification—Traditional to Deep Models: A Survey for Future Prospects, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 15. https://doi.org/
10.1109/JSTARS.2021.3133021.
Akbari, D., 2017, Improving Spectral–Spatial Classification of Hyperspectral Imagery Using Spectral Dimensionality Reduction Based on Weighted Genetic Algorithm, J. Indian Soc. Remote Sens., 45, PP. 927-937. https://doi.org/10.1007/s12524-016-0652-8.
Akbari, D., 2019,
Improved Neural Network Classification of Hyperspectral Imagery Using Weighted Genetic Algorithm and Hierarchical Segmentation, IET Image Process., 13, PP. 2169-2175.
https://doi.org/ 10.1049/iet-ipr.2018.5693.
Benediktsson, J.A., Pesaresi, M. & Amason, K., 2003,
Classification and Feature Extraction for Remote Sensing Images from Urban Areas Based on Morphological Transformations, IEEE Trans. Geos. and Remote Sens., 41, PP. 1940–1949. https://doi.org/
10.1109/TGRS. 2003.814625.
Benediktsson, J.A., Palmason, J.A. & Sveinsson, J.R., 2005,
Classification of Hyperspectral Data from Urban Areas Based on Extended Morphological Profiles, IEEE Trans. Geos. and Remote Sens., 43, PP. 480-491. https://doi.org/
10.1109/TGRS.2004.842478.
Chan, R.H., Kan, K.K., Nikolova, M. & Plemmons, R.J., 2020, A Two-Stage Method for Spectral–Spatial Classification of Hyperspectral Images, J. Math Imaging Vis., 62, PP. 790–807. https://doi.org/10.1007/ s10851-019-00925-9.
Chang, C.-I, 2003, Hyperspectral Imaging: Techniques for Spectral Detection and Classification, Orlando, FL: Kluwer Academic. https://doi.org/10.1007/978-1-4419-9170-6.
Chi, M., Kun, Q., Benediktsson, J.A. & Feng, R., 2009,
Ensemble Classification Algorithm for Hyperspectral Remote Sensing Data, IEEE Geosci. Remote Sens. Lett., 6, PP. 762–766. https://doi.org/
10.1109/LGRS.2009.2024624.
Ding, H., Xu, L., Wu, Y. & Shi, W., 2020, Classification of Hyperspectral Images by Deep Learning of Spectral-Spatial Features, Arab. J. Geosci., 13, PP. 464. https://doi.org/10.1007/s12517-020-05487-4.
Fauvel, M., Tarabalka, Y., Benediktsson, J.A., Chanussot, J. & Tilton, J.C., 2013,
Advances in Spectral-Spatial Classification of Hyperspectral Images, Proceedings of the IEEE, 101, PP. 652-675. https://doi.org/
10.1109/JPROC.2012.2197589.
Gonzalez, R.C. and Woods, R.E., 2002, Digital Image Processing, Prentice Hall, pp. 617-626.
Haralick, R.M., Shanmugam, K. & Dinstein, I., 1973,
Textural Features for Image Classification, IEEE Trans. on Systems, Man, and Cybernetics, SMC-3, PP. 610-621. https://doi.org/
10.1109/TSMC.1973.4309314.
Hasani, H., Samadzadegan, F. & Reinartz, P., 2017,
A Metaheuristic Feature-Level Fusion Strategy in Classification of Urban Area Using Hyperspectral Imagery and LiDAR Data, European Journal of Remote Sensing, 50, PP. 222-236.
https://doi.org/ 10.1080/22797254.2017.1314179.
Homayouni, S. & Roux, M., 2003, Material Mapping from Hyperspectral Images Using Spectral Matching in Urban Area, IEEE Workshop on Advances in Techniques for analysis of Remotely Sensed Data, NASA Goddard center, Washington DC, USA.
Hong, D., Wu, X., Ghamisi, P., Chanussot, J., Yokoya, N. & Zhu, X.X., 2020,
Invariant Attribute Profiles: A Spatial-Frequency Joint Feature Extractor for Hyperspectral Image Classification, IEEE Trans. Geosci. Remote Sens., 58, PP. 3791–3808.
https://doi.org/10.48550/arXiv.1912.08847.
Huang, X. & Zhang, L., 2009,
A Comparative Study of Spatial Approaches for Urban Mapping Using Hyperspectral Rosis Images over Pavia City, Northern Italy, International Journal of Remote Sensing, 30, PP. 3205–3221.
https://doi.org/10.1080/ 01431160802559046.
Li, S.,
Song, W.,
Fang, L.,
Chen, Y.,
Ghamisi, P. &
Benediktsson, J.A., 2019,
Deep Learning for Hyperspectral Image Classification: An Overview, IEEE Trans. Geosci. Remote Sens., PP. 1-20. https://doi.org/
10.1109/ TGRS.2019.2907932.
Lin, M.,
Jing, W.,
Di, D.,
Chen, G. &
Song, H., 2022,
Multi-Scale U-Shape MLP for Hyperspectral Image Classification,
IEEE Geoscience and Remote Sensing Letters, 19, PP. 1-5. https://doi.org/
10.1109/LGRS.2022. 3141547.
Mallat, S., 1999, A Wavelet Tour of Signal Processing, Academic Press, San Diego.
Pan, E., Mei, X., Wang, Q., Ma, Y. & Ma, J., 2020,
Spectral-Spatial Classification for Hyperspectral Image Based on a Single GRU, Neurocomputing, 387, PP. 150–160.
https://doi.org/10.1016/j.neucom.2020.01.029.
Pesaresi, M. & Benediktsson, J.A., 2001,
A New Approach for the Morphological Segmentation of High-Resolution Satellite Imagery, IEEE Trans. Geosci. Remote Sens., 39, PP. 309–320. https://doi.org/
10.1109/ 36.905239.
Shaw, G. & Manolakis, D., 2002,
Signal Processing for Hyperspectral Image Explotation, IEEE Signal Process. Mag., 19. https://doi.org/
10.1109/79.974715.
Tarabalka, Y., Chanussot, J. & Benediktsson, J.A., 2010,
Segmentation and Classification of Hyperspectral Images Using Minimum Spanning Forest Grown from Automatically Selected Markers, IEEE Trans. Syst., Man, Cybern. B, Cybern., 40, PP. 1267–1279. https://doi.org/
10.1109/ TSMCB.2009.2037132.
Tarabalka, Y., Tilton, J.C., Benediktsson, J.A. & Chanussot, J., 2011,
A Marker-Based Approach for the Automated Selection of a Single Segmentation from a Hierarchical Set of Image Segmentations, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/
10.1109/ JSTARS.2011.2173466.
Theodoridis, S. & Koutroumbas, K., 2006,
Pattern Recognition, United states of America, Academic Press, PP. 266-271. https://doi.org/
10.1109/TNN.2008.929642.
Vapnik, V., 1995, The Nature of Statistical Learning Theory, New York, NY: Springer-Verlag.
Varshney, P.K. & Arora, M.K., 2004, Advanced Image Processing Techniques for Remotely Sensed Hyperspectral Data, Springer Berlin Heidelberg New York. https://doi.org/10.1007/978-3-662-05605-9.
Wang, A.,
Li, M. &
Wu, H., 2022,
A Novel Classification Framework for Hyperspectral Image Data by Improved Multilayer Perceptron Combined with Residual Network, Symmetry, 14, P. 611.
https://doi.org/ 10.3390/sym14030611.
Zhou, H., Mao, Z. & Wang, D., 2005, Classification of Coastal Areas by Airborne Hyperspectral Image, in Proc. SPIE Opt. Technol. Atmos., Ocean, Environ. Stud., 5832, PP. 471–476.
Zhuo, L. & Zheng, J., 2008,
A Genetic Algorithm Based Wrapper Feature Selection Method for Classification of Hyperspectral Image Using Support Vector Machine, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, PP. 397-402.
https://doi.org/10.1117/12.813256.