Achanta, R. & Susstrunk, S., 2017,
Superpixels and Polygons Using Simple Non-Iterative Clustering, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, PP. 4651-4660, DOI:
10.1109/CVPR.2017.520.
Ali, M.Z., Qazi, W. & Aslam, N., 2018,
A Comprehensive Study of ALOS-2 PALSAR and Landsat-8 Imagery for Land Cover Classification Using Maximum Likelihood Classifier, The Egyptian Journal of Remote Sensing and Space Science, 21(1), PP. 29-35, DOI:
10.1016/j.ejrs.2018.03.003.
Aslami, F. & Ghorbani, A., 2018, Object-Based Land-Use/Land-Cover Change Detection Using Landsat Imagery: A Case Study of Ardabil, Namin, and Nir Counties in North-West Iran, Environmental Monitoring and Assessment, 190(7): P. 376, Doi: 10.1007/ s10661-018-6751-y.
Bagherian Marzouani, M., Akhoundali, A.M., Moazed, H., Jaafarzadeh, N., Ahadian, J. & Hasoonizadeh, H., 2014, Evaluation of Karun River Water Quality Scenarios Using Simulation Model Results, International Journal of Advanced Biological and Biomedical Research, 2(2), PP. 339-358, https://www.ijabbr.com/.
Ban, Y., Hu, H. & Rangel, I.M., 2010,
Fusion of QuickBird MS and RADARSAT SAR Data for Urban Land-Cover Mapping: Object-Based and Knowledge-Based Approach, International Journal of Remote Sensing, 31(6): PP. 1391-1410, Doi:
10.1080/01431160903475415.
Blaschke, T., 2010,
Object Based Image Analysis for Remote Sensing, ISPRS Journal of Photogrammetry and Remote Sensing, 65(1): PP. 2-16, Doi:
10.1016/ j.isprsjprs.2009.06.004.
Choudhury, M.A.M., Costanzini, S., Despini, F., Rossi, P., Galli, A., Marcheggiani, E. & Teggi, S., 2019,
Photogrammetry and Remote Sensing for the Identification and Characterization of Trees in Urban Areas, Journal of Physics Conference Series, 1249, P. 12008, DOI:
10.1088/1742-6596/1249/1/ 012008.
Darem, A.A., Alhashmi, A.A., Almadani, A.M., Alanazi, A.K. & Sutantra, G.A., 2023,
Development of a Map for Land Use and Land Cover Classification of the Northern Border Region Using Remote Sensing and GIS, The Egyptian Journal of Remote Sensing and Space Science, 26, PP. 341-350, DOI:
10.1016/j.ejrs.2023.04.005.
Dekker, R.J, 2003, Texture analysis and classification of ERS SAR images for map updating of urban areas in The Netherlands, IEEE Transactions on Geoscience and Remote Sensing, 41(9), PP. 1950-1958, DOI: 10.1109/TGRS.2003.814628.
Delfan, E., Naghavi, H., Maleknia, R. & Nouredini, A., 2020, Comparing the Capability of Sentinel-2 and Landsat-8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-Based and Object-Based Classification Methods, Desert Ecosystem Engineering Journal, 8(25), PP. 1-12, DOI: 10.22052/DEEJ.2018. 7.25.25.
Diek, S., Fornallaz, F., Schaepman, M.E. & De Jong, R., 2017,
Barest Pixel Composite for Agriculture Areas Using Landsat Time Series, Remote Sensing, 9(12), P. 1245, DOI:
10.3390/rs9121245.
Djerriri, K., Safia, A. & Adjoudi, R., 2020,
Object-Based Classification of Sentinel-2 Imagery Using Compact Texture Unit Descriptors through Google Earth Engine, Mediterranean and Middle-East Geoscience and Remote Sensing Symposium, Tunis, Tunisia, PP. 105-108, DOI:
10.1109/ M2GARSS47143.2020.9105181.
Dronova, I., Gong, P., Wang, L. & Zhong, L., 2015,
Mapping Dynamic Cover Types in a Large Seasonally Flooded Wetland Using Extended Principal Component Analysis and Object-Based Classification, Remote Sensing of Environment, 158, PP. 193-206, DOI:
10.1016/j.rse.2014.10.027.
Feng, M. & Li, X., 2020,
Land Cover Mapping toward Finer Scales, Science Bulletin, 65(19), PP. 1604-1606, DOI:
10.1016/j.scib. 2020.06.014.
Ghorbanian, A., Kakooei, M., Amani, M., Mahdavi, S., Mohammadzadeh, A. & Hasanlou, M., 2020,
Improved Land Cover Map of Iran Using Sentinel Imagery within Google Earth Engine and a Novel Automatic Workflow for Land Cover Classification Using Migrated Training Samples, ISPRS Journal of Photogrammetry and Remote Sensing, 167, PP. 276-288, DOI:
10.1016/j.isprsjprs.2020.07.013.
Haji, K., Esmali-Ouri, A., Mostafazadeh, R. & Nazarnejad, H., 2022,
Assessment of Land Cover/Land Use Changes Using Object-Oriented Processing of Satellite Imageries (1985-2015) in the Rozechai Watershed of Urmia, Journal of Aplied Researches in Geographical Sciences, 22(66), PP. 171-189, DOI:
10.52547/jgs.22.66.171.
Haralick, R.M., Shanmugam, K. & Dinstein, I.H., 1973,
Textural Features for Image Classification, Studies in Media and Communication, 3(6), PP. 610-621, DOI:
10.1109/TSMC.1973.4309314.
Hedayati, A., Vahidnia, M.H. & Behzadi, S., 2022,
Paddy Lands Detection Using Landsat-8 Satellite Images and Object-Based Classification in Rasht City, Iran, The Egyptian Journal of Remote Sensing and Space Science, 25(1), PP. 73-84, DOI:
10.1016/j.ejrs.2021.12.008.
Hosseiny, B., Abdi, A.M. & Jamali, S., 2022,
Urban Land Use and Land Cover Classification with Interpretable Machine Learning- A Case Study Using Sentinel-2 and Auxiliary Data, Remote Sensing Applications: Society and Environment, 28, P. 100843, DOI:
10.1016/j.rsase.2022.100843.
Hughes, M.J. & Hayes, D.J., 2014,
Automated Detection of Cloud and Cloud Shadow in Single-Date Landsat Imagery Using Neural Networks and Spatial Post-Processing, Remote Sensing, 6(6), PP. 4907-4926, DOI:
10.3390/rs6064907.
Jenerette, G.D., Harlan, S.L., Brazel, A., Jones, N., Larsen, L. & Stefanov, W.L., 2007,
Regional Relationships between Surface Temperature, Vegetation, and Human Settlement in a Rapidly Urbanization Ecosystem, Landscape Ecology, 22, PP. 353-365, DOI:
10.1007/s10980-006-9032-z.
Joshi, N., Baumann, M., Ehammer, A., Fensholt, R., Grogan, K., Hostert, P., Jepsen, M.R., Kuemmerle, T., Meyfroidt, P., Mitchard, E.T., Reiche, J., Ryan, C. M. & Waske, B., 2016,
A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring, Remote Sensing, 8(1), P. 70, DOI:
10.3390/rs8010070.
Khalil, R.Z. & ul-Haque, S., 2018,
InSAR Coherence-Based Land Cover Classification of Okara, Pakistan, The Egyptian Journal of Remote Sensing and Space Science, 21(1), PP. 23-28, DOI:
10.1016/j.ejrs.2017.08.005.
Lanari, R., Bonano, M., Casu, F., Luca, C.D., Manunta, M., Manzo, M., Onorato, G. & Zinno, I., 2020,
Automatic Generation of Sentinel-1 Continental Scale D-InSAR Deformation Time Series through an Extended P-SBAS Processing Pipeline, Cloud Computing Environment Remote Sensing, 12, P. 2961, DOI:
10.3390/rs12182961.
Li, Y., Jiang, W., Zhang, J., Li, B., Yan, R. & Wang, X., 2021, Sentinel-1 SAR-Based Coseismal Deformation Monitoring Service for Rapid Geodetic Imaging of Global Earthquakes, Natural Hazards Research, 1(1), PP. 11-19, DOI:
10.1016/j.nhres.2020.12.001.
Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Homayouni, S. & Gill, E., 2018,
The First Wetland INVENTORY MAP of Newfoundland at a Spatial Resolution of 10 M Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform, Remote Sensing, 11(1), P. 43, DOI:
10.3390/rs11010043.
Mananze, S., Pôças, I. & Cunha, M., 2020,
Mapping and Assessing the Dynamics of Shifting Agricultural Landscapes Using Google Earth Engine Cloud Computing, a Case Study in Mozambique, Remote Sensing,
12(8), P. 1279, DOI:
10.3390/rs12081279.
Martha, T.R., Kerle, N., Jetten, V., Van Westen, C.J. & Kumar, K.V., 2010,
Charactersting Spectral, Spatial and Morphometric Properties of Landslides for Semi-Automatic Detection Using Object-Oriented Methods, Geomorphology, 116, PP. 24-36, DOI:
10.1016/j.geomorph.2009.10.004.
Messina, G., Peña, J.M., Vizzari, M. & Modica, G., 2020,
A Comparison of UAV and Satellites Multispectral Imagery in Monitoring Onion Crop. An Application in the ‘Cipolla Rossa di Tropea’ (Italy), Remote Sensing, 12(20), P. 3424, DOI:
10.3390/ rs12203424.
Mi, L. & Chen, Z., 2020,
Superpixel-Enhanced Deep Neural Forest for Remote Sensing Image Semantic Segmentation, ISPRS Journal of Photogrammetry and Remote Sensing, 159, PP. 140-152, DOI:
10.1016/j.isprsjprs.2019.11.006.
Mohammadi, A. & Khodabandehlou, B., 2020,
Classification and Assessment of Land Use Changes in Zanjan City Using Object-Oriented Analysis and Google Earth Engine System, Journal of Geography and Environmental Planning, 31(2), PP. 25-42, DOI:
10.22108/GEP.2020.120666.1242.
Olson, C., 2009, The Fallacy of Normality in Remotely Sensed Data, ASPRS Annual Conference, American Society for Photogrammetry and Remote Sensing, Baltimore, Maryland, https://www.asprs.org/a/ publications/proceedings/baltimore09/0072.pdf.
Paludo, A., Becker, W.R., Richetti, J., De Albuquerque Silva, L.C. & Johann, J.A., 2020,
Mapping Summer Soybean and Corn with Remote Sensing on Google Earth Engine Cloud Computing in Parana State-Brazil,
International Journal of Digital Earth, 13(12), PP. 1624-1636, DOI:
10.1080/17538947.2020.1772893.
Peters, J., Verhoest, N.E.C., Samson, R., Boeckx, P. & De Baetsm B., 2008,
Wetland Vegetation Distribution Modelling for the Identification of Constraining Environmental Variables, Landscape Ecology, 23, PP. 1049-1065, DOI:
10.1007/ s10980-008-9261-4.
Polykretis, C., Grillakis, M.G. & Alexakis, D.D., 2020,
Exploring the Impact of Various Spectral Indices on Land Cover Change Detection Using Change Vector Analysis: A Case Study of Crete Island, Greece, Remote Sensing, 12(2), P. 319, DOI:
10.3390/rs12020319.
Sarzynski, T., Giam, X., Carrasco, L. & Lee, J.S.H., 2020,
Combining Radar and Optical Imagery to Map Oil Palm Plantations in Sumatra, Indonesia, Using the Google Earth Engine, Remote Sensing, 12(7), P. 1220, DOI:
10.3390/rs12071220.
Shaharum, N.S.N., Shafri, H.Z.M., Ghani, W.A.W.A.K., Samsatli, S., Prince, H.M., Yusuf, B. & Hamud, A.M., 2019.
Mapping the Spatial Distribution and Changes of Oil Palm Land Cover Using an Open Source Cloud-Based Mapping Platform, International Journal of Remote Sensing,
40(19), PP. 7459-7476, DOI:
10.1080/ 01431161.2019.1597311.
Shendryk, Y., Rist, Y., Ticehurst, C. & Thorburn, P., 2019,
Deep Learning for Multi-Modal Classification of Cloud, Shadow and Land Cover Scenes in PlanetScope and Sentinel-2 Imagery, ISPRS Journal of Photogrammetry and Remote Sensing, 157, PP. 124-136, DOI:
10.1016/j.isprsjprs.2019.08.018.
Singh, R.P., Singh, N., Singh, S. & Mukherjee, S., 2016,
Normalized Difference Vegetation Index (NDVI) Based Classification to Assess the Change in Land Use/Land Cover (LULC) in Lower Assam, India,
International Journal of Advanced Remote Sensing and GIS, 5, DOI:
10.23953/cloud.ijarsg.74.
Solano, F., Di Fazio, S. & Modica, G., 2019,
A Methodology Based on GEOBIA and WorldView-3 Imagery to Derive Vegetation Indices at Tree Crown Detail in Olive Orchards, International Journal of Applied Earth Observation and Geoinformation, 83, P. 101912, DOI:
10.1016/j.jag.2019.101912.
Stromann, O., Nascetti, A., Yousif, O. & Ban, Y., 2019,
Dimensionality Reduction and Feature Selection for Object-Based land Cover Classification Based on Sentinel-1 and Sentinel-2 Time Series Using Google Earth Engine, Remote Sensing, 12(1), P. 76, DOI:
10.3390/rs12010076.
Su, W., Li, J., Chen, Y., Liu, Z., Zhang, J., Low, T.M., Suppiah, I., & Hashim, S.A.M., 2008, Textural and local spatial statistics for the object-oriented classification of urban areas using high resolution imagery, International Journal of Remote Sensing, 29, pp 3105–3117, DOI: 10.1080/01431160701469016.
Takaku, J., Tadono, T. & Tsutsui, K., 2014, Generation of High Resolution Global DSM from ALOS PRISM, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, 4, PP. 25-31, DOI: 10.5194/isprsarchives-XL-4-243-2014.
Tassi, A. & Vizzari, M., 2020,
Object-Oriented LULC Classification in Google Earth Engine Combining SNIC, GLCM, and Machine Learning Algorithms, Remote Sensing, 12, P. 3776, DOI:
10.3390/rs12223776.
Thi, H., Nguyen, T., Doan, T. & Radeloff, V., 2018, Applying Random Forest Classification to Map Land Use/Land Cover Using Landsat-8 OLI, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3/W4, Istanbul, Turkey, DOI: 10.5194/isprs-archives-XLII-3-W4-363-2018.
Wang, C., Li, D., Li, Z., Wang, D., Dey, N., Biswas, A., Moraru, L., Sherratt, R. & Shi, F., 2019,
An Efficient Local Binary Pattern Based Plantar Pressure Optical Sensor Image Classification Using Convolutional Neural Networks, Optik, 185, PP. 543-557, DOI:
10.1016/j.ijleo.2019.02.109.
Xiong, J., Thenkabail, P.S., Tilton, J.C., Gumma, M.K., Teluguntla, P., Oliphant, A., Congalton, R.G., Yadav, K. & Gorelick, N., 2017,
Nominal 30-m Cropland Extent Map of Continental Africa by Integrating Pixel-Based and Object-Based Algorithms Using Sentinel-2 and Landsat-8 Data on Google Earth Engine, Remote Sensing, 9, P. 1065, DOI:
10.3390/rs9101065.
Yang, J., Gong, P., Fu, R., Zhang, M., Chen, J., Liang, S., Xu, B., Shi, J. & Dickinson, R., 2013,
The Role of Satellite Remote Sensing in Climate Change Studies, Nature Climate Change, 3(10), PP. 875-883, DOI:
10.1038/nclimate2033.
Yang, L., Wang, L., Abdullahi Abubakar, G. & Huang, J., 2021,
High-Resolution Rice Mapping Based on SNIC Segmentation and Multi-Source Remote Sensing Images, Remote Sensing, 13(6), P. 1148, DOI:
10.3390/rs13061148.
Zhou, D., Xiao, J., Frolking, S., Liu, S., Zhang, L., Cui, Y. & Zhou, G., 2021,
Croplands Intensify Regional and Global Warming According to Satellite Observations, Remote Sensing of Environment, 264, P. 112585, DOI:
10.1016/j.rse.2021.112585.
Zou, Q., Ni, L., Zhang, T. & Wang, Q., 2015,
Deep Learning Based Feature Selection for Remote Sensing Scene Classification, IEEE Geoscience and Remote Sensing Letters, 12(11), PP. 2321-2325, DOI:
10.1109/LGRS. 2015.2475299.
Zurqani, H.A., Post, C.J., Mikhailova, E.A., Schlautman, M.A. & Sharp, J.L., 2018,
Geospatial Analysis of Land Use Change in the Savannah River Basin Using Google Earth Engine, International Journal of Applied Earth Observation and Geoinformation, 69, PP. 175-185, DOI:
10.1016/j.jag.2017.12.006