Afshari, A., Ayati, E. & Barakchi, M., 2021,
Evaluating the Effects of External Factors on Pedestrian Violations at Signalized Intersections (A Case Study of Mashhad, Iran), IATSS Research, 45(2), PP. 234-240,
https://doi.org/https://doi.org/10.1016/j.iatssr.2020.10.004.
Ahmed, K., Shahid, S., Ismail, T., Nawaz, N. & Wang, X., 2018,
Absolute Homogeneity Assessment of Precipitation Time Series in an Arid Region of Pakistan, Atmósfera, 31, PP. 301-316,
https://doi.org/10.20937/ATM. 2018.31.03.06.
Aidoo, E.N., Amoh-Gyimah, R. & Ackaah, W., 2013,
The Effect of Road and Environmental Characteristics on Pedestrian Hit-and-Run Accidents in Ghana, Accident Analysis & Prevention, 53, PP. 23-27,
https://doi.org/ 10.1016/j.aap.2012.12.021.
Apardian, R.E. & Monwar Alam, B., 2020,
Pedestrian Fatal Crash Location Analysis in Ohio Using Exploratory Spatial Data Analysis Techniques, Transportation Research Record, 2674(11), PP. 888-900,
https://doi.org/10.1177/0361198120950717.
Blazquez, C.A. & Celis, M.S., 2013,
A Spatial and Temporal Analysis of Child Pedestrian Crashes in Santiago, Chile, Accident Analysis & Prevention, 50, PP. 304-311,
https://doi.org/10.1016/j.aap.2012.05.001.
Bone, C., Wulder, M.A., White, J.C., Robertson, C. & Nelson, T.A., 2013,
A GIS-Based Risk Rating of Forest Insect Outbreaks Using Aerial Overview Surveys and the Local Moran's I statistic, Applied Geography, 40, PP. 161-170,
https://doi.org/10.1016/ j.apgeog.2013.02.011.
Bunnarong, S. & Upala, P., 2018,
Spatial Analysis to Identify Pedestrian Crash Zones: A Case Study of School Zones in Thailand, The Open Transportation Journal, 12(1),
DOI: 10.2174/1874447801812010167.
Ćosić, M., Šimunović, L. & Jakovljević, M., 2019,
Relationships between External Factors and Pedestrian Accident Blacksp ots–A Case Study of the City of Zagreb, Promet-Traffic&Transportation, 31(3), PP. 329-340,
https://doi.org/10.7307/ptt.v31i3.3119.
Elzeiny, R., Khadr, M., Zahran, S. & Rashwan, E., 2019, Homogeneity Analysis of Rainfall Series in the Upper Blue Nile River Basin, Ethiopia, Journal of Engineering Research, 3(September), PP. 46-53, DOI:10.21608/ erjeng.2019.125704.
Fox, L., Serre, M.L., Lippmann, S.J., Rodríguez, D.A., Bangdiwala, S.I., Gutiérrez, M.I., Escobar, G. & Villaveces, A., 2015,
Spatiotemporal Approaches to Analyzing Pedestrian Fatalities: The Case of Cali, Colombia, Traffic Injury Prevention, 16(6), PP. 571-577,
https://doi.org/10.1080/ 15389588.2014.976336.
Grekousis, G. & Gialis, S., 2019,
More Flexible Yet Less Developed? Spatio-Temporal Analysis of Labor Flexibilization and Gross Domestic Product in Crisis-Hit European Union Regions, Social Indicators Research, 143(2), PP. 505-524.
https://doi.org/10.1007/s11205-018-1994-0.
Gunawan, A., Mendez, C. & Santos-Marquez, F., 2019, Regional Income Disparities, Distributional Convergence, and Spatial Effects: Evidence from Indonesia, Munich Personal RePEc Archive, DOI: 10.1007/ s10708-021-10377-7.
Hasani, J., Erfanpoor, S., Rajabi, A., Barzegar, A., Khodadoost, M., Afkar, M. & Hashemi Nazari, S.S., 2019, Spatial Analysis of Mortality Rate of Pedestrian Accidents in Iran during 2012–2013, Traffic Injury Prevention, 20(6), PP. 636-640, DOI: 10.1080/15389588.2019.1628223.
Hassanpour, M., Mohammadzadeh, A., Mohsenian, S.H., 2016, Investigating the Impact of Urban Planning Parameters on Pedestrian Accidents (Case Study: Mashhad City), 17th International Conference on Transportation and Traffic Engineering, Tehran, Iran.
Hassanpour, M., Shad, R., Mohammadzadeh, A., Shiran, GH. & Mohsenian, S.H., 2017, Identifying Pedestrian Accident Hotspots Using Kernel Density Function in GIS Environment (Case Study: Mashhad City), Road Journal, 25(90), PP. 19-30.
Hoxha, G., Shala, A. & Likaj, R., 2017,
Pedestrian Crash Model for Vehicle Speed Calculation at Road Accident, International Journal of Civil Engineering and Technology, 8(9), PP. 1093-1099, DOI:
https://doi.org/ 10.1515/scjme-2017-0017.
Huang, J., Peng, Y., Yang, J., Otte, D. & Wang, B., 2018,
A Study on Correlation of Pedestrian Head Injuries with Physical Parameters Using in-Depth Traffic Accident Data and Mathematical Models, Accident Analysis & Prevention, 119, PP. 91-103,
https://doi.org/10.1016/j.aap.2018.07.012.
Ibeneme, S., Ukor, N., Droti, B., Karamagi, H., Okeibunor, J. & Zawaira, F., 2022,
Geospatial Clustering of Mobile Phone Use and Tuberculosis Health Outcomes Among African Health Systems [Original Research], Frontiers in Public Health, 9,
https://doi.org/10.3389/fpubh.2021.653337.
Jamali-Dolatabad, M., Sadeghi-Bazargani, H. & Mousavi, S., 2022, Applying Count Time Series to Assess 13-Year Pedestrian Mortality Trend Caused by Traffic Accidents in East-Azerbaijan Province, Iran, International Journal of Injury Control and Safety Promotion, 29(2), PP. 239-246, DOI: 10.1080/17457300.2021.1998134.
Kahya, E., Arıkan, B.B. & Akdeniz, E., 2016, Homogeneity Analysis of Precipitation Series in Turkey, 12th International Congress on Advances in Civil Engineering–ACE, 10.13140/rg.2.2.36695.27044.
Kang, Y., Cho, N. & Son, S., 2018, Spatiotemporal Characteristics of Elderly Population’s Traffic Accidents in Seoul Using Space-Time Cube and Space-Time Kernel Density Estimation, PLoS One, 13(5), P. e0196845, https://doi.org/10.1371/ journal.pone.0196845.
Kaygisiz, Ö., Yildiz, A. & Duzgun, S., 2015, Spatio-Temporal Pedestrian Accident Analysis to Improve Urban Pedestrian Safety: The Case of the Eskisehir Motorway, Gazi University Journal of Science, 28(4), PP. 623-630.
Kendall, M.G., 1965, Course in Multivariate Analysis, Hafner Publishing Company.
Mandal, B.K. & Yadav, B.N., 2014,
Pattern and Distribution of Pedestrian Injuries in Fatal Road Traffic Accidental Cases in Dharan, Nepal, Journal of Natural Science, Biology, and Medicine, 5(2), P. 320, DOI:
10.4103/0976-9668.136175.
Mann, H.B., 1945, Nonparametric Tests against Trend, Econometrica: Journal of the Econometric Society, 13(3), PP. 245-259, https://doi.org/10.2307/1907187.
Marcolini, G., Bellin, A. & Chiogna, G., 2017,
Performance of the Standard Normal Homogeneity Test for the Homogenization of Mean Seasonal Snow Depth Time Series: Performance of Snht for Snow Depth Time Series, International Journal of Climatology, 37,
https://doi.org/10.1002/joc.4977.
Martin, A., 2006, Factors Influencing Pedestrian Safety: A Literature Review, TRL Wokingham, Berks.
Mead, J., Zegeer, C. & Bushell, M., 2014,
Evaluation of Pedestrian-Related Roadway Measures: A Summary of Available Research, P a BI Center. Chapel Hill, NC, UNC Highway safety Research Center, 115, DOI:
10.4236/chnstd.2017.61003.
Mirzaei, B., Shad, R. & Mohammadzadeh, A., 2021, Evaluation of the Spatial Distribution of Elderly Pedestrian Accidents Using a GIS Environment (Case Study: Mashhad City), Journal of Traffic Engineering, 89, PP. 15-25.
Munira, S., Sener, I.N. & Dai, B., 2020,
A Bayesian Spatial Poisson-Lognormal Model to Examine Pedestrian Crash Severity at Signalized Intersections, Accident Analysis & Prevention, 144, P. 105679,
https://doi.org/ 10.1016/j.aap.2020.105679.
Murat, O., Sayin, C.G. & Yuruk, Y., 2017,
Analysis of the Pedestrian Accidents in Turkey, International Journal of Engineering and Geosciences, 2(3), PP. 100-109,
https://doi.org/10.26833/ijeg.323826.
Nabavi Niaki, M.S., Fu, T., Saunier, N., Miranda-Moreno, L.F., Amador, L. & Bruneau, J.-F., 2016,
Road Lighting Effects on Bicycle and Pedestrian Accident Frequency: Case Study in Montreal, Quebec, Canada, Transportation Research Record, 2555(1), PP. 86-94,
https://doi.org/10.3141/2555-12.
Oikawa, S., Matsui, Y., Doi, T. & Sakurai, T., 2016,
Relation between Vehicle Travel Velocity and Pedestrian Injury Risk in Different Age Groups for the Design of a Pedestrian Detection System, Safety Science, 82, PP. 361-367,
https://doi.org/ 10.1016/j.ssci.2015.10.003.
Palma, W., 2016, Time Series Analysis. John Wiley & Sons, DOI: 10.1007/s00362-016-0858-4.
Parvareh, M., Karimi, A., Rezaei, S., Woldemichael, A., Nili, S., Nouri, B. & Nasab, N.E., 2018, Assessment and Prediction of Road Accident Injuries Trend Using Time-Series Models in Kurdistan, Burns & Trauma, 6, DOI: 10.1186/s41038-018-0111-6.
Pettitt, A.N., 1979, A Non‐Parametric Approach to the Change‐Point Problem, Journal of the Royal Statistical Society: Series C (Applied Statistics), 28(2), PP. 126-135, https://doi.org/10.2307/2346729.
Prato, C.G., Gitelman, V. & Bekhor, S., 2012,
Mapping Patterns of Pedestrian Fatal Accidents in Israel, Accident Analysis & Prevention, 44(1), PP. 56-62,
https://doi.org/ 10.1016/j.aap.2010.12.022.
Qasim, S.M., Youns, A.M. & Mahmood-Agha, O.M., 2020, Testing of the Homogeneity of Precipitation Time Series in Selected Regions of Iraq, Al-Rafidain Engineering Journal (AREJ), 25(1), PP. 126-137, DOI: 10.33899/rengj.2020.127033.1035.
Rabbani, M., Musarat, M.A., Alaloul, W., Maqsoom, A., Bukhari, H. & Rafiq, W., 2021,
Road Traffic Accident Data Analysis and Its Visualization, Civil Engineering and Architecture, 9, PP. 1603-1614,
https:// doi.org/10.13189/cea.2021.090530.
Rankavat, S. & Tiwari, G., 2013, Pedestrian Accident Analysis in Delhi Using GIS, Journal of the Eastern Asia Society for Transportation Studies, 10, PP. 1446-1457, DOI:10.11175/EASTS.10.1446.
Roess, R.P., Prassas, E.S. & McShane, W.R., 2010, Traffic Engineering (4th ed.), Prentice Hall.
Santhosh, A., Sam, E. & Bindhu, B., 2020, Pedestrian Accident Prediction Modelling—A Case Study in Thiruvananthapuram City, Transportation Research: Proceedings of CTRG 2017, DOI:10.1007/ 978-981-32-9042-6_50.
Schneider, R.J., Ryznar, R.M. & Khattak, A.J., 2004,
An Accident Waiting to Happen: A Spatial Approach to Proactive Pedestrian Planning, Accident Analysis & Prevention, 36(2), PP. 193-211,
https://doi.org/10.1016/ S0001-4575(02)00149-5.
Sen, P.K., 1968,
Estimates of the Regression Coefficient Based on Kendall's Tau, Journal of the American Statistical Association, 63(324), PP. 1379-1389,
https://doi.org/ 10.2307/2285891.
Sewalkar, P. & Seitz, J., 2019,
Vehicle-to-Pedestrian Communication for Vulnerable Road Users: Survey, Design Considerations, and Challenges, Sensors, 19(2), P. 358,
https://doi.org/10.3390/s19020358.
Shabanikiya, H., Hashtarkhani, S., Bergquist, R., Bagheri, N., VafaeiNejad, R., Amiri-Gholanlou, M., Akbari, T. & Kiani, B., 2020, Multiple-Scale Spatial Analysis of Paediatric, Pedestrian Road Traffic Injuries in a Major City in North-Eastern Iran 2015–2019, BMC Public Health, 20(1), PP. 1-11, DOI: 10.1186/s12889-020-08911-2.
Shariat Mohaymany, A. & Shahri, M., 2020,
Evaluating the Impact of New Congestion Charging Scheme Using Smartphone-Based Data: A Spatial Change Detection Study, Canadian Journal of Civil Engineering, 47(9), PP. 1105-1115,
https://doi.org/10.1139/cjce-2019-0106.
Shbeeb, L., 2023, Clustering and Pedestrian Crashes Prediction Modelling: Amman Case, International Journal of Injury Control and Safety Promotion, 30(4), PP. 501-529, DOI: 10.1080/17457300.2023.2214900.
Sheykhfard, A., Haghighi, F., Nordfjærn, T. & Soltaninejad, M., 2020, Structural Equation Modelling of Potential Risk Factors for Pedestrian Accidents in Rural and Urban Roads, International Journal of Injury Control and Safety Promotion, 28(1), PP. 46-57, https://doi.org/10.1080/17457300.2020.1835991.
Sheykhfard, A., Haghighi, F., Papadimitriou, E. & Van Gelder, P., 2021,
Analysis of the Occurrence and Severity of Vehicle-Pedestrian Conflicts in Marked and Unmarked Crosswalks through Naturalistic Driving Study, Transportation Research Part F: Traffic Psychology and Behaviour, 76, PP. 178-192,
https://doi.org/https://doi.org/10.1016/ j.trf.2020.11.008.
Shiran, GH., Hassanpour, M., Shad, R. & Mohammadzadeh, A., 2017,
Network-Based Modeling of Pedestrian Injury Accidents Using Neural Networks in a GIS Environment (Case Study: Mashhad City), Journal of Transportation, 10(2), PP.
245-266, DOI:
20.1001.1.20086598.1397.10.2.4.9.
Siddiqui, C., Abdel-Aty, M. & Choi, K., 2012,
Macroscopic Spatial Analysis of Pedestrian and Bicycle Crashes, Accident Analysis & Prevention, 45, PP. 382-391,
https://doi.org/10.1016/j.aap.2011.08.003.
Soltani, A. & Askari, S., 2014, Analysis of Intra-Urban Traffic Accidents Using Spatiotemporal Visualization Techniques, Transport and Telecommunication, 15(3), P. 227, DOI 10.2478/ttj-2014-0020.
Stipancic, J., Miranda-Moreno, L., Strauss, J. & Labbe, A., 2020,
Pedestrian Safety at Signalized Intersections: Modelling Spatial Effects of Exposure, Geometry and Signalization on a Large Urban Network, Accident Analysis & Prevention, 134, P. 105265.
https://doi.org/10.1016/j.aap.2019. 105265.
Tímea, K., Kovács-Székely, I. & Anda, A., 2020,
Homogeneity Tests and Non-Parametric Analyses of Tendencies in Precipitation Time Series in Keszthely, Western Hungary, Theoretical and Applied Climatology, 139,
https://doi.org/10.1007/ s00704-019-03014-4.
Truong, L.T. & Somenahalli, S.V., 2011,
Using GIS to Identify Pedestrian-Vehicle Crash Hot Spots and Unsafe Bus Stops, Journal of Public Transportation, 14(1), PP. 99-114,
https://doi.org/10.5038/2375-0901.14.1.6.
Von Neumann, J., 1941, Distribution of the Ratio of the Mean Square Successive Difference to the Variance, The Annals of Mathematical Statistics, 12(4), PP. 367-395, DOI: 10.1214/aoms/1177731677.
WHO, 2013, Pedestrian Safety: A Road Safety Manual for Decision-Makers and Practitioners.
Wilt, G., Lewis, B. & Adams, E., 2019,
A Spatial Exploration of Changes in Drug Overdose Mortality in the United States, 2000–2016, Preventing Chronic Disease, 16,
https://doi.org/10.5888/pcd16.180405.
Xu, X., Xie, S., Wong, S.C., Xu, P., Huang, H. & Pei, X., 2016, Severity of Pedestrian Injuries due to Traffic Crashes at Signalized Intersections in Hong Kong: A Bayesian Spatial Logit Model, Journal of Advanced Transportation, 50(8), PP. 2015-2028, https://doi.org/10.1002/atr.1442.
Yigit Katanalp, B., Eren, E. & Alver, Y., 2023, An Integrated Solution to Identify Pedestrian-Vehicle Accident Prone Locations: GIS-Based Multicriteria Decision Approach, Journal of Transportation Safety & Security, 15(2), PP. 137-176, https://doi.org/10.1080/19439962.2022.2048760.
Yue, S. & Wang, C., 2004, The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series, Water Resources Management, 18(3), PP. 201-218, DOI: 10.1023/B:WARM.0000043140.61082.60.
Zhang, S., Abdel-Aty, M., Yuan, J. & Li, P., 2020,
Prediction of Pedestrian Crossing Intentions at Intersections Based on Long Short-Term Memory Recurrent Neural Network, Transportation Research Record, 2674(4), PP. 57-65,
https://doi.org/10.1177/ 0361198120912422.