Prediction of Tehran Air Pollution Using PCA-ANFIS Method

Document Type : علمی - پژوهشی

Authors

1 PH.d. student of geographic information systems, Faculty of Geodesy and Geomatics, K.N.Toosi University of Technology

2 Associate Prof., Faculty of Geodesy and Geomatics, K.N.Toosi University of Technology

3 Assistant Prof., Faculty of Geodesy and Geomatics, K.N.Toosi University of Technology

4 Faculty Member of Geomatics Ingineering University of Bojnourd

Abstract

Urban growth and increased use of vehicles have led to an increase in air pollution, especially in large and industrialized cities in recent years. Because of the adverse effect of air pollution on human and other creatures, prediction and modeling of this complex phenomenon have the main concern of researchers during the last years. The purpose of this research is to design an air pollution prediction system to identify the contaminated areas in order to help the urban managers and planners to control and reduce the amount of contaminants. In the proposed system in order to predict the air pollution in different seasons, PCA-ANFIS model has been used. In this system, meteorological data and concentrations of pollutants are used to predict air pollution in Tehran over the next 24 hours. In addition, spatial parameters including height, topography and distance from the road are used to model the spatial distribution of air pollution. Comparing the results of PCA-ANFIS and ANFIS methods prove that the proposed model obtained higher accuracy in less processing time.

Keywords


  1. خزاعی، ا.، آل شیخ، ع.ا.، کریمی، م.، وحیدنیا، م.ح.، 2013، مقایسة دو روش مدل‌سازی با استفاده از شبکة عصبی‌– فازی در پیش‌بینی غلظت آلایندة مونوکسید کربن، محیط‌شناسی، دورة 38، شمارة 4.
  2. Alizadeh, M., Jolai, F., Aminnayeri, M. & Rada, R., 2012, Comparison of Different Input Selection Algorithms in Neuro-Fuzzy Modeling, Expert Systems with Applications, 39(1), PP. 1536–1544.
  3. Athanasiadis, I.N., Kaburlasos, V.G., Mitkas, P.A. & Petridis, V., 2003, Applying Machine Learning Techniques on Air Quality Data for Real-Time Decision Support, First International NAISO Symposium on Information Technologies in Environmental Engineering (ITEE'2003), Gdansk, Poland.
  4. Boznar, M., Lesjak, M. & Mlakar, P., 1993, A Neural Network-Based Method for Short-Term Predictions of Ambient SO2 Concentrations in Highly Polluted Industrial Areas of Complex Terrain, Atmospheric Environment, Part B. Urban Atmosphere, 27(2), PP. 221–230.
  5. Brook, R.D., Franklin, B., Cascio, W., Hong, Y., Howard, G., Lipsett, M., Luepker, R., Mittleman, M., Samet, J. & Smith, S.C., 2004, Air Pollution and Cardiovascular Disease, Circulation 109(21), PP. 2655–2671.
  6. Brunekreef, B. & Holgate, S.T., 2002, Air Pollution and Health, The Lancet 360(9341), PP. 1233–1242.
  7. Chan-Yeung, M., 2000, Air Pollution and Health, Hong Kong Medical Journal 6(4), PP. 390–398.
  8. Fernando, H.J., Mammarella, M., Grandoni, G., Fedele, P., Di Marco, R., Dimitrova, R. & Hyde, P., 2012, Forecasting PM 10 in Metropolitan Areas: Efficacy of Neural Networks, Environmental Pollution 163, PP. 62–67.
  9. Fisher, B., 2003, Fuzzy Environmental Decision-Making: Applications to Air Pollution, Atmospheric Environment 37(14), PP. 1865–1877.
  10. Garcia Nieto, P.J., Combarro, E.F., del Coz Diaz, J.J. & Montañes, E., 2013, A SVM-Based Regression Model to Study the Air Quality at Local Scale in Oviedo Urban Area (Northern Spain): A Case Study, Applied Mathematics and Computation 219(17), PP. 8923–8937.
  11. Ghaemi, Z., Farnaghi, M. & Alimohammadi, A., 2016, An Online Approach for Spatio-Temporal Prediction of Air Pollution in Tehran Using Support Vector Machine, Journal of Geospatial Information Technology, 3(4): PP. 43–63.
  12. Gorai, A.K., Tuluri, F. & Tchounwou, P.B., 2014, A GIS Based Approach for Assessing the Association between Air Pollution and Asthma in New York State, USA, International Journal of Environmental Research and Public Health, 11(5), PP. 4845–4869.
  13. Güler, I. & Übeyli, E.D., 2005, Adaptive Neuro-Fuzzy Inference System for Classification of EEG Signals Using Wavelet Coefficients, Journal of Neuroscience Methods, 148(2), PP. 113–121.
  14. Jain, S. & Khare, M., 2010, Adaptive Neuro-Fuzzy Modeling for Prediction of Ambient CO Concentration at Urban Intersections and Roadways, Air Quality, Atmosphere & Health, 3(4), PP. 203–212.
  15. Jang, J.-S., 1992, Self-Learning Fuzzy Controllers Based on Temporal Backpropagation, IEEE Transactions on Neural Networks, 3(5), PP. 714–723.
  16. Jang, J.-S., 1993, ANFIS: Adaptive-Network-Based Fuzzy Inference System, IEEE Transactions on Systems, Man, and Cybernetics, 23(3), PP. 665–685.
  17. Kolehmainen, M., Martikainen, H., Hiltunen, T. & Ruuskanen, J., 2000, Forecasting Air Quality Parameters Using Hybrid Neural Network Modelling, Urban Air Quality: Measurement, Modelling and Management, Springer, PP. 277–286.
  18. Kumar, A. & Goyal, P., 2011, Forecasting of Air Quality in Delhi Using Principal Component Regression Technique, Atmospheric Pollution Research, 2(4), PP. 436–444.
  19. McKone, T.E. & Deshpande, A.W., 2005, Can Fuzzy Logic Bring Complex Environmental Problems into Focus?, ACS Publications.
  20. Mintz, D., 2012, Technical Assistance Document for the Reporting of Daily Air Quality-the Air Quality Index (AQI), US Environmental Protection Agency, Office of Air Quality Planning and Standards.
  21. Morabito, F.C. & Versaci, M., 2003, Fuzzy Neural Identification and Forecasting Techniques to Process Experimental Urban Air Pollution Data, Neural Networks, 16(3), PP. 493–506.
  22. Mostafaeipour, A., Zarezade, M., Goudarzi, H., Rezaei-Shouroki, M. & Qolipour, M., 2017, Investigating the Factors on Using the Solar Water Heaters for Dry Arid Regions: A Case Study, Renewable and Sustainable Energy Reviews, 78, PP. 157–166.
  23. Moussiopoulos, N., Sahm, P. & Kessler, C., 1995, Numerical Simulation of Photochemical Smog Formation in Athens, Greece—a Case Study, Atmospheric Environment, 29(24), PP. 3619–3632.
  24. Nia, A.M., Alimohammadi, A., Habibi, R. & Shirzadi, M., 2015, Spatial and Statistical Analysis of Leptospirosis in Guilan Province, Iran, The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(1), P. 497.
  25. Niska, H., Hiltunen, T., Karppinen, A., Ruuskanen, J. & Kolehmainen, M., 2004, Evolving the Neural Network Model for Forecasting Air Pollution Time Series, Engineering Applications of Artificial Intelligence, 17(2), PP. 159–167.
  26. Nunnari, G., 2000, Simplified Fuzzy Modelling of Pollutant Time Series, Neural Network World, 10(6), PP. 983–1000.
  27. Perez, P., Trier, A. & Reyes, J., 2000, Prediction of PM 2.5 Concentrations Several Hours in Advance Using Neural Networks in Santiago, Chile, Atmospheric Environment, 34(8), PP. 1189–1196.
  28. Riahi-Madvar, H., Ayyoubzadeh, S.A., Khadangi, E. & Ebadzadeh, M.M., 2009, An Expert System for Predicting Longitudinal Dispersion Coefficient in Natural Streams by Using ANFIS, Expert Systems with Applications, 36(4), PP. 8589–8596.
  29. Robeson, S. & Steyn, D., 1990, Evaluation and Comparison of Statistical Forecast Models for Daily Maximum Ozone Concentrations, Atmospheric Environment, Part B, Urban Atmosphere, 24(2), PP. 303–312.
  30. Ross, T.J., 2009, Fuzzy Logic with Engineering Applications, John Wiley & Sons.
  31. Sahoo, M.M., Patra, K. & Khatua, K., 2015, Inference of Water Quality Index Using ANFIA and PCA, Aquatic Procedia, 4: PP. 1099–1106.
  32. Shahraiyni, H.T., Sodoudi, S., Kerschbaumer, A. & Cubasch, U., 2015, A New Structure Identification Scheme for ANFIS and its Application for the Simulation of Virtual Air Pollution Monitoring Stations in Urban Areas, Engineering Applications of Artificial Intelligence, 41, PP. 175–182.
  33. Sindelar, R. & Babuska, R., 2004, Input Selection for Nonlinear Regression Models, IEEE Transactions on Fuzzy Systems, 12(5), PP. 688–696.
  34. Singh, K.P., Gupta, S. & Rai, P., 2013, Identifying Pollution Sources and Predicting Urban Air Quality Using Ensemble Learning Methods, Atmospheric Environment, 80, PP. 426–437.
  35. Statheropoulos, M., Vassiliadis, N. & Pappa, A., 1998, Principal Component and Canonical Correlation Analysis for Examining Air Pollution and Meteorological Data, Atmospheric Environment, 32(6), PP. 1087–1095.
  36. Taylan, O., 2017, Modelling and Analysis of Ozone Concentration by Artificial Intelligent Techniques for Estimating Air Quality, Atmospheric Environment, 150, PP. 356–365.
  37. Ul-Saufie, A.Z., Yahaya, A.Z., Ramli, N.A., Rosaida, N. & Hamid, H.A., 2013, Future Daily PM 10 Concentrations Prediction by Combining Regression Models and Feedforward Backpropagation Models with Principle Component Analysis (PCA), Atmospheric Environment, 77, PP. 621–630.
  38. Williams, B., Onsman, A. & Brown, T., 2010, Exploratory Factor Analysis: A Five-Step Guide for Novices, Australasian Journal of Paramedicine, 8(3).
  39. Zhang, J., Wang, C.-m., Liu, L., Guo, H., Liu, G.-d., Li, Y.-w. & Deng, S.-h., 2014, Investigation of Carbon Dioxide Emission in China by Primary Component Analysis, Science of The Total Environment, 472, PP. 239–247.
  40. Zheng, Y., Liu, F. & Hsieh, H.-P., 2013, U-Air: When Urban Air Quality Inference Meets Big Data, Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM.
  41. Ziomas, I.C., Melas, D., Zerefos, C.S., Bais, A.F. & Paliatsos, A.G., 1995, Forecasting Peak Pollutant Levels from Meteorological Variables, Atmospheric Environment, 29(24), PP. 3703–3711.