Adams, M.L., Philpot, W.D. and Norvell, W.A., 1999. Yellowness index: an application of spectral second derivatives to estimate chlorosis of leaves in stressed vegetation. International Journal of Remote Sensing, 20(18), pp.3663-3675.
Ashourloo, D., Shahrabi, H.S., Azadbakht, M., Rad, A.M., Aghighi, H. & Radiom, S., 2020, A Novel Method for Automatic Potato Mapping Using Time Series of Sentinel-2 Images, Computers and Electronics in Agriculture, 175, P. 105583.
Bannari, A., Morin, D., Bonn, F. & Huete, A., 1995, A Review of Vegetation Indices, Remote Sensing Reviews, 13, PP. 95-120.
Bargiel, D., 2017, A New Method for Crop Classification Combining Time Series of Radar Images and Crop Phenology Information, Remote Sensing of Environment, 198, PP. 369-383.
Bengio, Y., Simard, P. & Frasconi, P., 1994, Learning Long-Term Dependencies with Gradient Descent is Difficult, IEEE Transactions on Neural Networks, 5, PP. 157-166.
Foerster, S., Kaden, K., Foerster, M. & Itzerott, S., 2012, Crop Type Mapping Using Spectral–Temporal Profiles and Phenological Information, Computers and Electronics in Agriculture, 89, PP. 30-40.
Gadiraju, K.K. & Vatsavai, R.R., 2020, Comparative Analysis of Deep Transfer Learning Performance on Crop Classification, In, Proceedings of the 9th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data (PP. 1-8).
Gitelson, A.A., Viña, A., Arkebauer, T.J., Rundquist, D.C., Keydan, G. and Leavitt, B., 2003. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophysical research letters, 30(5).
Hatfield, J.L. & Prueger, J.H., 2010, Value of Using Different Vegetative Indices to Quantify Agricultural Crop Characteristics at Different Growth Stages under Varying Management Practices, Remote Sensing, 2, PP. 562-578.
Hochreiter, S. & Schmidhuber, J., 1997, Long Short-Term Memory, Neural Computation, 9, PP. 1735-1780.
Huete, A. & Tucker, C., 1991, Investigation of Soil Influences in AVHRR Red and Near-Infrared Vegetation Index Imagery, International Journal of Remote Sensing, 12, PP. 1223-1242.
Huete, A., Justice, C. & Liu, H., 1994, Development of Vegetation and Soil Indices for MODIS-EOS, Remote Sensing of Environment, 49, PP. 224-234.
Jia, X., Khandelwal, A., Carlson, K.M., Gerber, J.S., West, P.C., Samberg, L.H. & Kumar, V., 2020, Automated Plantation Mapping in Southeast Asia Using Modis Data and Imperfect Visual Annotations, Remote Sensing, 12, P. 636.
Krizhevsky, A., Sutskever, I. & Hinton, G.E., 2017, ImageNet Classification with Deep Convolutional Neural Networks, Communications of the ACM, 60, PP. 84-90.
Lyu, H., Lu, H. & Mou, L., 2016, Learning a Transferable Change Rule from a Recurrent Neural Network for Land Cover Change Detection, Remote Sensing, 8, P. 506.
Mou, L. & Zhu, X.X., 2018, RiFCN: Recurrent Network in Fully Convolutional Network for Semantic Segmentation of High Resolution Remote Sensing Images, arXiv preprint arXiv:1805.02091.
Peña-Barragán, J.M., Ngugi, M.K., Plant, R.E. & Six, J., 2011, Object-Based Crop Identifi-cation Using Multiple Vegetation Indices, Textural Features and Crop Phenology, Remote Sensing of Environment, 115, PP. 1301-1316.
Qi, J., Chehbouni, A., Huete, A.R., Kerr, Y.H. and Sorooshian, S., 1994. A modified soil adjusted vegetation index. Remote sensing of environment, 48(2), pp.119-126.
Richardson, A.J. and Wiegand, C.L., 1977. Distinguishing vegetation from soil background information. Photogrammetric engineering and remote sensing, 43(12), pp.1541-1552.
Rogan, J., Franklin, J. & Roberts, D.A., 2002, A Comparison of Methods for Monitoring Multitemporal Vegetation Change Using Thematic Mapper Imagery, Remote Sensing of Environment, 80, PP. 143-156.
Rußwurm, M., & Korner, M., 2017, Temporal Vegetation Modelling Using Long Short-Term Memory Networks for Crop Identification from Medium-Resolution Multi-Spectral Satellite Images, In, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (PP. 11-19).
Rußwurm, M. and Körner, M., 2018. Convolutional LSTMs for cloud-robust segmentation of remote sensing imagery. arXiv preprint arXiv:1811.02471.
Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A. & Skakun, S., 2017, Exploring Google Earth Engine Platform for Big Data Processing: Classification of Multi-Temporal Satellite Imagery for Crop Mapping, frontiers in Earth Science, 5, 17.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V. & Rabinovich, A., 2015, Going Deeper with Convolutions, In, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (PP. 1-9).
Tucker, C.J. and Sellers, P.J., 1986. Satellite remote sensing of primary production. International journal of remote sensing, 7(11), pp.1395-1416.
Xie, Y., Sha, Z. & Yu, M., 2008, Remote Sensing Imagery in Vegetation Mapping: A Review, Journal of Plant Ecology, 1, PP. 9-23.
Zhong, L., Hu, L. & Zhou, H., 2019, Deep Learning Based Multi-Temporal Crop Classification, Remote Sensing of Environment, 221, PP. 430-443.