Determination of Groundwater Spring Potential Using Maximum Entropy, GIS and RS Emphasizing HAND Topographic-Hydrologic New Index (Case Study: Urmia Lake Basin)

Document Type : Original Article

Authors

1 Assistant prof., Higher Education Complex of Shirvan

2 Ph.D. of Watershed Management Sciences and Engineering, University of Agricultural Sciences and Natural Resources, Gorgan

Abstract

The purpose of this research is to determine the groundwater potential of areas and to prioritize the factors affecting it using the maximum entropy method and the new height above the nearest drainage index. In the present study, 14 effective indicators have been used for groundwater potential including topographic, geological, climatic, hydrological and land use factors as well as a new height above the nearest drainage index (HAND). First, the factors were divided into two parts including of topographic and other factors such as geology, climate, hydrology and land use, and groundwater potential map was prepared based on them. Then, with the integration of the indices, the final groundwater potential map was prepared. Of the 2547 springs, using the Mahalanobis distance method, 60% of the data was classified as test data and 40% as validation data. The results showed that according to topographic indices, other factors and the combination of all indicators, 38.5, 27.4 and 34.7 percent of the area have groundwater potential, respectively. Also based on Jackknife Diagram, the altitude, land use, slope, relative slope, HAND index and lithology were the most important factors influencing groundwater potential. The area under curvature (AUC) based on ROC diagram indicates accuracy of 83, 83 and 85% (very good) at the training stage and 82, 81 and 84% (very good) in the validation step based on topographic indicators, other factors and the integration of all indicators. Given that the HAND index has been an effective factor of groundwater, it has a crucial role in identifying areas with groundwater potential.

Keywords


اسدی نلیوان، ا.، 1397، ارزیابی و نقشه‌بندی منابع و مصارف آب زیرزمینی در راستای ارائة برنامة مدیریت حوضة رودخانة حبله‌رود، رسالة دکتری علوم و مهندسی آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان.
ذبیحی، م.، پورقاسمی، ح.ر.، بهزادفر، م.، 1394، تهیة نقشة پتانسیل آب زیرزمینی با استفاده از مدل‌های آنتروپی شانون و جنگل تصادفی در دشت بجنورد، اکوهیدرولوژی، دورة دوم، شمارة 2، صص. 232-221.
رحیمی، م.، سلیمانی، ک.، 1395، ارزیابی پتانسیل منابع آب زیرزمینی دشت دهگلان برپایة سیستم اطلاعات جغرافیایی و سنجش از دور با استفاده از تکنیک‌ تصمیم‌گیری چندمعیاره، مجلة علوم و مهندسی آبخیزداری ایران، جلد دهم، شمارة 35، صص. 38-27.
رزندی، ی.، فرخ‌زاده، ب.، یوسف‌زاده، م.، تیموریان، ت.، 1396، پتانسیل‌یابی منابع آب زیرزمینی با استفاده از الگوریتم حداکثر آنتروپی و سامانة اطلاعات جغرافیایی (مطالعة موردی: دشت همدان‌ـ بهار)، فصلنامة علمی‌ـ پژوهشی مهندسی آبیاری و آب، دورة هشتم، شمارة 29، صص. 123-110.
رضایی‌مقدم، م.ح.، رحیم‌پور، ت.، نخستین‌روحی، م.، 1395، پتانسیل‏‌یابی منابع آب زیرزمینی با استفاده از فرایند تحلیل شبکه‌‏ای در محیط سیستم اطلاعات جغرافیایی (مطالعۀ موردی: حوضه‌‌های آبریز منتهی به دشت تبریز)، اکوهیدرولوژی، دورة سوم، شمارة 3، صص. 389-379.
رضوی، و.، مسگری، م.س.، کاظمی، ک.، 1396، ارزیابی و مقایسة روش‌های نسبت فراوانی، شاخص آماری و آنتروپی برای تهیة نقشة پتانسیل آب زیرزمینی با استفاده از سیستم اطلاعات جغرافیایی (مطالعة موردی: شهرستان جهرم)، اکوهیدرولوژی، دورة چهارم، شمارة 3، صص. 736-725.
عرب‌عامری، ع.، سهرابی، م.، رضایی، خ.، یمانی، م.، شیرانی، ک.، 1397، شبیه‌سازی آب‌های زیرزمینی حوضة نجف‌آباد با روش ترکیبی داده‌محور تابع شواهد قطعی‌ـ شاخص آنتروپی، نشریة پژوهش‌های حفاظت آب‌وخاک، دورة بیست‌وپنجم، شمارة 2، صص. 48-25.
 
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
[1]. Phillips
 
Agarwal, R. & Garg, P.K., 2016, Remote Sensing and GIS Based Groundwater Potential & Recharge Zones Mapping Using Multi Criteria Decision Analysis Making Technique, Water Resources Management, 30(1), PP. 243-260.
Al-Abadi, A., Al-Temmeme, A. & Al-Ghanimy, A., 2016, A GIS-Based Combining of Frequency Ratio and Index of Entropy Approaches for Mapping Groundwater Availability Zones at Badra-Al-Gharbi–Teeb Areas, Iraq, Water Resources Management, 2(3), PP. 265-283.
Arulbalaji, P., Padmalal, D. & Sreelash, K., 2019, GIS and AHP Techniques Based Delineation of Groundwater Potential Zones: A Case Study from Southern Western Ghats, India, Scientific Reports, 9(1), P. 2082, Access: https://doi.org/ 10.1038/s41598-019-38567-x.
Chen, W., Li, H., Hou, E., Wang, S., Wang, G., Panahi, M., Li, T., Peng, T., Guo, C., Niu, C., Xiao, L., Wang, J., Xie, X. & Ahmad, B.B., 2018, GIS-Based Groundwater Potential Analysis Using Novel Ensemble Weights-of-Evidence with Logistic Regression and Functional Tree Models, Science of the Total Environment, 634, PP. 853-867.
Chen, W., Pradhan, B., Li, S., Shahabi, H., Rizaei, H., Hou, E. & Wang, S., 2019, Novel Hybrid Integration Approach of Bagging-Based Fishers Linear Dis-criminate Function for Groundwater Potential Analysis, Natural Resources Research, 28, PP. 1239-1258, Access: https://doi.org/10.1007/s11053-019-09465-w.
Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E. & Yates, C.J., 2011, A Statistical Explanation of MaxEnt for Ecologists, Divers Distribution, 17(1), PP. 43-57.
Etikala, B., Golla, V., Li, P. & Renati, S., 2019, Deciphering Groundwater Potential Zones Using MIF Technique and GIS: A Study from Tirupati Area, Chittoor District, Andhra Pradesh, India, Hydro Research, 1, PP. 1-7.
Golkarian, A., Naghibi, S.A., Kalantar, B. & Pradhan, B., 2018, Groundwater Potential Mapping Using C5.0, Random Forest, and Multivariate Adaptive Regression Spline Models in GIS, Environmental Monitoring and Assessment, 190(3), P. 149.
Golkarian, A. & Rahmati, O., 2018, Use of a Maximum Entropy Model to Identify the Key Factors that Influence Groundwater Availability on the Gonabad Plain, Iran, Environmental Earth Sciences, 77(369), P. 369.
Haghizade, A., Moghaddam, D. & Pourghasemi, H., 2017, GIS-Based Bivariate Statistical Techniques for Groundwater Potential Analysis (An Example of Iran), Journal of Earth System Science, 126(109), P. 109.
Kariminejad, N., Hosseinalizadeh, M., Pourghasemi, H.R., Jakiel, A.B., Campetella, G. & Ownegh, M., 2019, Evaluation of Factors Affecting Gully Headcut Location Using Summary Statistics and the Maximum Entropy Model: Golestan Province, NE Iran, Science of the Total Environment, 677, PP. 281-298.
Kordestani, M.D., Naghibi. S.A., Hashemi, H., Ahmadi, K., Kalantar, B. & Pradhan, B., 2019, Groundwater Potential Mapping Using a Novel Data-Mining Ensemble Model, Hydrogeology, 27, PP. 211-224.
Kornejady, A., Ownegh, M. & Bahremand, A., 2017, Landslide Susceptibility Assessment Using Maximum Entropy Model with Two Different Data Sampling Methods, Catena, 152, PP. 144-162.
Lee, S., Hyun, Y. & Lee, M., 2019, Groundwater Potential Mapping Using Data Mining Models of Big Data Analysis in Goyang-si, South Korea, Sustainability, 11(6), P. 1678.
Lee, S., Song, K.Y., Kim, Y. & Park, I., 2012, Regional Groundwater Productivity Potential Mapping Using a Geographic Information System (GIS) Based Artificial Neural Network Model, Hydrogeology Journal, 20, PP. 1511-1527.
Machireddy, S.R., 2019, Delineation of Groundwater Potential Zones in South East Part of Anantapur District Using Remote Sensing and GIS Applications, Sustainable Water Resources Management, 5, PP. 1695-1709, Access: https://doi.org/ 10.1007/s40899-019-00324-3.
Mahalanobis, P.C., 1936, On the Generalized Distance in Statistics, Proceedings of the National Institute of Sciences (Calcutta), 2, PP. 49-55.
Miraki, S.H., Zanganeh, S., Chapi, K., Singh, V.P., Shirzadi, A., Shahabi, H. & Pham, B.T., 2019, Mapping Groundwater Potential Using a Novel Hybrid Intelligence Approach, Water Resources Management, 33(1), PP. 281-302.
Mogaji, K.A. & Lim, H.S., 2018, Application of Dempster-Shafer Theory of Evidence Model to Geoelectric and Hydraulic Parameters for Groundwater Potential Zonation, Journal of Astronomy and Geophysics, 7(1), PP. 134-148.
Muniraj, K., Jesudhas, C.J. & Chinnasamy, A., 2019, Delineating the Groundwater Potential Zone in Tirunelveli Taluk, South Tamil Nadu, India, Using Remote Sensing, Geographical Information System (GIS) and Analytic Hierarchy Process (AHP) Techniques, Proceedings of the National Academy of Sciences, India Section A: PhysicalSciences, Access: https://doi.org/10.1007/s40010-019-00608-5.
Naghibi, S.A., Moghaddam, D., Kalantari, B., Pradhan, B. & Kisi, O., 2017, A Comparative Assessment of GIS-Based Data Mining Models and a Novel Ensemble Model in Groundwater Well Potential Mapping, Journal of Hydrology, 548, PP. 471-483.
Naghibi, S.A. & Pourghasemi, H.R., 2015, A Comparative Assessment between Three Machine Learning Models and their Performance Comparison by Bivariate and Multivariate Statistical Methods for Groundwater Potential Mapping in Iran, Water Resources Management, 29(14), PP. 5217-5236.
Nampak, H., Pradhan, B. & Manap, M.A., 2014, Application of GIS Based Data Driven Evidential Belief Function Model to Predict Groundwater Potential Zonation, Journal of Hydrology, 513, PP. 283-300.
Phillips, S.J., Anderson, R.P. & Schapire, R.E., 2006, Maximum Entropy Modeling of Species Geographic Distributions, Ecological Modeling, 190(3-4), PP. 231-259.
Rahmati, O., Kornejady, A., Samadi, M., Nobre, A.D. & Melesse, A.M., 2018, Development of an Automated GIS Tool for Reproducing the HAND Terrain Model, Environmental Modelling & Software, 102, PP. 1-12.
Rahmati, O., Naghibi, S.A., Shahabi, H., Bui, D.T., Pradhan, B., Azareh, A. et al., 2018, Groundwater Spring Potential Modeling: Comprising the Capability and Robustness of Three Different Modeling Approaches, Journal of Hydrology, 565, PP. 248-261.
Rahmati, O., Pourghasemi, H.R. & Melesse, A.M., 2016, Application of GIS-Based Data Driven Random Forest and Maximum Entropy Models for Groundwater Potential Mapping: A Case Study at Mehran Region, Iran, Catena, 137, PP. 360-372.
Rajan, S.S., Shenbagam, R. & Anitha, M., 2019, Investigation of Groundwater Potential Zones Using RS & GIS in Western part of Krishnagiri District, Journal of IJRREM, 3(3), PP. 22-46.
Razandi, Y., Pourghasemi, H.R., Samani Neisani, N. & Rahmati, O., 2015, Application of Analytical Hierarchy Process, Frequency Ratio, and Certainty Factor Models for Groundwater Potential Mapping Using GIS, Earth Science Informatics, 8(4), PP. 867-883.
Speckhann, G.A., Borges Chaffe, P.L., Fabris Goerl, R., Abreu, J.J.D. & Altamirano
Flores, J.A., 2018, Flood Hazard Mapping in Southern Brazil: A Combination of Flow Frequency Analysis and the HAND Model, Hydrology Sciences Journal, 63(1), PP. 87-100Access: https://doi.org/10.1080/ 02626667.2017.1409896.
Thilagavathi, N., Subramani, T., Suresh, M. & Karunanidhi, D., 2015, Mapping of Groundwater Potential Zones in Salem Chalk Hills, Tamil Nadu, India, Using Remote Sensing and GIS Techniques, Environment Monitoring Assessment, 187(164), PP. 1-17.
Yang, X.Q., Kushwaha, S.P., Saran, S., Xu, J. & Roy, P.S., 2013, Maxent Modeling for Predicting the Potential Distribution of Medicinal Plant, Justicia Adhatoda L. in Lesser Himalayan Foothills, Ecological Engineering, 51, PP. 83-87.
Yeh, H.F., Cheng, Y.S., Lin, H. & Lee, C., 2016, Mapping Groundwater Recharge Potential Zone Using a GIS Approach in Hualian River, Taiwan, Sustainable Environment Research, 26(1), PP. 33-43.
Yin, H., Shi, Y., Niu, H., Xie, D., Wei, J., Leftricariu, L. & Xu, S., 2018, A GIS-Based Model of Potential Groundwater Yield Zonation for a Sandstone Aquifer in the Juye Coalfield, Shangdong, China, Journal of Hydrology, 557, PP. 434-447.
Zabihi, M., Pourghasemi, H.R., Sadat Pourtaghi, Z. & Behzadfar, M., 2016, GIS-Based Multivariate Adaptive Regression Spline and Random Forest Models for Groundwater Potential Mapping in Iran, Environment Earth Science, 75(8), P. 665.