Document Type : Original Article


1 M.Sc. Student of Remote Sensing & GIS Dep., Tarbiat Modarres University

2 Associate Prof. of Remote Sensing & GIS Dep.,Tarbiat Modarres University

3 Ph.D. Student of Remote Sensing & GIS Research Center, Shahid Beheshti University


Due to the scarcity and crisis of water resources, the issue of optimal use and management of it is of
particular importance. Improper pattern of water consumption in different areas of a city can be one of
the cases that cause water crisis in a city. Therefore, there is necessary to apply methods in order to
identify consumption patterns in different areas of the city. The purpose of this study is to investigate
the spatial pattern of water consumption in Qom city using spatial autocorrelation techniques. For this
reason, the consumption of 117 neighborhoods of Qom city during 2017 was collected and the
average household water consumption for each neighborhood was calculated. Moran index was used
to identify the type of consumption pattern and local Moran index and hot spot technique were used
for spatial distribution of the consumption pattern. The results of spatial autocorrelation showed that
the largest cluster pattern of water consumption in Qom city occurred in summer with the value of
Moran index (I = 0.24). Also, the highest significance of the index (z = 7.02) was observed in this
season. In both local and hot spot analysis, it was observed that high consumption has a high cluster
pattern compared to low consumption. Spatially, high consumption clusters were observed in the
central and western neighborhoods of the city and low consumption clusters were observed in the
southern, eastern and northern neighborhoods of the city. Temporally, high consumption clusters were
observed in central and western neighborhoods in summer and winter, respectively and low
consumption clusters were observed in cold seasons.


آهنگرکانی، م.، خواسته، س.ح.، 1398، تحلیل مصرف آب شهری (خانگی) شهرستان بابل با استفاده از روش‌های داده‌کاوی، اطلاعات جغرافیایی سپهر، دورة بیست‌وهشتم، شمارة 111، صص. 69-53.
بختیاری، ن.، زنگنه، ی.، تقوایی، م.، زنگنه، م.، 1399، بررسی الگوی فضایی مصرف آب خانگی در اصفهان و تحلیل عوامل اجتماعی و فرهنگی مؤثر بر آن، پژوهش‌های جغرافیای انسانی، دورة پنجاه‌ودوم، شمارة 2، صص. 531-515.
علیجانی، ب.، دوستکامیان، م.، اشرفی، س.، شاکری، ف.، 1394، بررسی تغییرات الگوی خودهمبستگی مکانی درون‌دهه‌ای بارش ایران طی نیم قرن اخیر، جغرافیا و آمایش شهری منطقه‌ای، شمارة 8، صص. 88-71.
فلاح قالهری، غ.، و اسدی، م. (1397). بررسی تغییرات زمانی-مکانی ساعات آفتابی در ایران.
جغرافیا و برنامه ریزی، 22(64 )، 229-246.
نادیان، م.، میرزائی، ر.، سلطانی محمدی، س.، 1397، کاربرد شاخص خودهمبستگی مکانی موران در تحلیل فضایی‌ـ زمانی آلایندة PM2.5 (مطالعة موردی: تهران)، مهندسی بهداشت محیط، سال پنجم، شمارة 3، صص. 213-197.
Abulibdeh, A., 2021, Spatiotemporal Analysis of Water-Electricity Consumption in the Context of the COVID-19 Pandemic Across Six Socioeconomic Sectors in Doha City, Qatar, Applied Energy, 304, P. 117864.
Anselin, L., 1995, Local Indicators of Spatial Association: LISA, Geographical Analysis, 27(2), PP. 93-115.
Anselin, L., Syabri, I. & Kho, Y., 2010, GeoDa: An Introduction to Spatial Data Analysis, In M.M. Fischer & A. Getis (Eds.), Handbook of applied spatial analysis. Springe: Berlin Heidelberg. PP. 73-89.
Chang, H., Parandvash, G.H. & Shandas, V., 2010, Spatial Variations of Single-Family Residential Water Consumption in Portland, Oregon, Urban Geography, PP. 953- 972.
Cliff, A.D. & Ord, J.K., 1981, Spatial Processes: Models & Applications, Taylor & Francis.
Cressie, N., 1993, Statistics for Spatial Data, New York, John Wiley & Sons.
Fang, C., Wang, Z. & Xu, G., 2016, Spatial-Temporal Characteristics of PM2. 5 in China: A City-Level Perspective Analysis, Journal of Geographical Sciences, 26(11), PP. 1519-32.
Fu, J.W., Jiang, P.K., Zhou, G.M. & Zhao, K.L., 2014, Using Moran’s I and GIS to Study the Spatial Pattern of Forest Litter Carbon Density in a Subtropical Region of Southeastern China, Biogeosciences, 11, PP. 2401-2409.
Getis, A. & Ord, J.K., 1992, The Analysis of Spatial Association by Use of Distance Statistics, Geographical Analysis, 24(3), PP. 189-206.
Ghalhari, F.G. & Roudbari, A.D., 2018, An Investigation on Thermal Patterns in Iran Based on Spatial Autocorrelation, Theoretical and Applied Climatology, 131, PP. 865- 876.
Griffith, D., 1987, Spatial Autocorrelation: A Primer, Resource Publication in Geography, Association of American Geographers.
Haque, M.M., Rahman, A., Hagare, D. & Kibria, G., 2014, Probabilistic Water Demand Forecasting Using Projected Climatic Data for Blue Mountains Water Supply System in Australia, Water Resources Management, 28(7), PP. 1959-1971.
Kendall, W.S., 1998, Perfect Simulation for the Area-Interaction Point Process, In L. Accardi and C.C. Heyde, editors, Probability Towards 2000, Springer Lecture Notes in Statistics, 128, PP. 218-234.
Kumari, M., Kiranmay, S. & Sharma, R., 2019, Using Moran's I and GIS to Study the Spatial Pattern of Land Surface Tempera-ture in Relation to Land Use/ Cover around a Thermal Power Plant in Singrauli District, Madhya Pradesh, India, Remote Sensing Applications: Society and Environment, 15, P. 100239.
Li, Y., 2013, Analysis of Urban Water Use and Urban Consumptive Water Use in Nebraska-Case Study in the City of Lincoln, Grand Island and Sidney, Master’s thesis, University of Nebraska-Lincoln, Lincoln, NE, USA.
Moller, J., 2008, Handbook of Spatial Statistics, John Wiley and Sons, Chichester.
Ord, J.K. & Getis, A., 1995, Local Spatial Autocorrelation Statistics: Distributional Issues and an Application, Geographical Analysis, 27(4). PP. 287-306.
Ouyang, Y., 2013, Relationship between Single-Family Residential Water Use and Its Determinants: A Spatio-Temporal Study of Phoenix, Arizona, A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree  Doctor of Philosophy.
Rogerson, P.A., 2006, Statistics Methods for Geographers: Students Guide, SAGE Publications, Los Angeles, California.
Shi, L., 2018, A Review of Applying Spatial Modelling and GIS in Residential Water Use, Material Science and Engineering, 392, P. 062106.
Tepanosyan, G., Sahakyan, L., Zhang, Ch. & Saghatelyan, A., 2019, The Application of Local Moran's I to Identify Spatial Clusters and Hot Spots of Pb, Mo and Ti in Urban Soils of Yerevan, Applied Geochemistry, 104, PP. 116-123.
Wafula, P.N. & Ngigi, T.G., 2015, GIS Based Analysis of Supply and Forecasting Piped Water Demand in Nairobi, International Journal of Engineering Science Invention, 4(2), PP. 1- 11.
Wang, Z.B. & Fang, C.L., 2016, Spatial-Temporal Characteristics and Determinants of PM 2.5 in the Bohai Rim Urban Agglomeration, Chemosphere, 148, PP. 148-62.
Yang, Q., Zhang, H., Bai, W. & Liu, W., 2018, County-Scale Migration Attractivity and Factors Analysis, 26th International Conference on Geoinformatics IEEE, PP. 1-7.
Yuan, Y., Cave, M. & Zhang, Ch., 2018, Using Local Moran's I to identify Contamination Hotspots of Rare Earth Elements in Urban Soils of London, Applied Geochemistry, 88, PP. 167- 178.
Zhang, Ch., Luo, L,. Xu, Weilin & Ledwith, V., 2008, Use of Local Moran's I and GIS to Identify Pollution Hotspots of Pb in Urban Soils of Galway, Ireland, Science of the total Environment, 398, PP. 212-221.