Document Type : Original Article


1 Space Research Institute, Iranian Space Research Center

2 Assistant Prof., Dept. of RS & GIS, Shahid Beheshti University

3 Iranian Space Research Center, Tehran, Iran

4 Prof., Dept. of GIS Engineering, Faculty of Geodesy & Geomatic Engineering, K.N. Toosi Uniersity of Technology


Rapid increase of the world population growth and the demand for food security makes increasing yield as an essential strategy for solving the food supply problem. What is more, because of the restrictions in increasing crop cultivation areas and the decrease in some crops such as wheat in Iran, increasing the yield potential can be an effective way to respond to this requirement. Fusarium Head Blight (FHB) is one of the most important wheat diseases and for prediction FHB some methods have already been developed in the USA, Canada, Argentina and Brazil. As there is no model for predicting FHB in Iran, in this study, a method for predicting severity of FHB based on spatial analysis and using environmental parameters and meteorological data was developed for the Moghan, which is in the northwest of Iran. An Internet of Things (IoT) network was established in the study area for measurement of environmental data, including relative humidity, rainfall and air temperature for evaluating the developed model. Random Forests (RF) and extracted indices were used for predicting FHB severity and calculating the relative importance of the indices. We evaluated FHB for the period of 1389 to 1396 and the results show the effectiveness of the developed model and the capability of IoT and spatial analysis for predicting FHB.


سپهوند، ن.ع.، حیدری، ف.، طوطیائی، ع.ح.، سراج آذری، م.، مظفری، ج.، 1388، ارزیابی مزرعه‌ای و مولکولی مقاومت گندم‌های ایرانی به فوزاریوم سنبلة گندم، بیوتکنولوژی کشاورزی، دورة اول، شمارة 1، صص. 80-63.
سلیمانیان ریزی، س.، نواب‌پور، س.، سلطانلو، ح.، کلاته عربی، م.، 1389، بررسی اثرات صفات مرفولوژیک ژنوتیپ‌های گندم بهاره با مقاومت به بادزدگی فوزاریومی سنبله، پژوهش‌های تولید گیاهی، جلد هفدهم، شمارة 4.
آقاجانی، م.ع.، فروتن، ع.ر.، کاظمی، ه.، 1395، مدیریت بیماری‌های بادزدگی فوزاریومی سنبلة گندم، سازمان تحقیقات، آموزش و ترویج کشاورزی، مؤسسة تحقیقات گیاه‌پزشکی کشور (طرح پژوهشی).
Breiman, L., 2001, Random Forests, Machine Learning, 45(1), PP. 5-32.
Carranza, MR and Moschini, Ricardo Carlos and Kraan, Gilberto and Bariffi (2007). Examination of meteorology-based predictions of Fusarium head blight of wheat grown at two locations in the southern Pampas region of Argentina, Australasian Plant Pathology 36, 305—308.
De Wolf, E., Madden, L. & Lipps, P., 2003, Risk Assessment Models for Wheat Fusarium Head Blight Epidemics Based on Within-Season Weather Data, Phytopathology, 93(4), PP. 428-435.
Del Ponte, E.M., Fernandes, J.M.C. & Pavan, W., 2005, A Risk Infection Simulation Model for Fusarium Head Blight of Wheat, Fitopatologia Brasileira, 30(6), PP. 634-642.
Haran, M., Bhat, K.S., Molineros, J. & De Wolf, E., 2010, Estimating the Risk of a Crop Epidemic from Coincident Spatio-Temporal Processes, Journal of Agricultural, Biological, and Environmental Statistics, 15(2), PP. 158-175.
Hooker, D., Schaafsma, A., Tamburic-Ilincic, L., 2002, Using Weather Variables Pre- and Post-Heading to Predict Deoxynivalenol Content in Winter Wheat, Plant Disease,86, PP. 611-619.
Giroux, M-E and Bourgeois, G and Dion, Y and Rioux, S and Pageau, D and Zoghlami, S and Parent, C and Vachon, E and Vanasse, A (2016). Evaluation of forecasting models for Fusarium head blight of wheat under growing conditions of Quebec, Canada Plant disease 100(6): 1192-1201.
Landschoot, S., Waegeman, W., Audenaert, K., Van Damme, P., Vandepitte, J., De Baets, B. & Haesaert, G., 2013, A Field-Specific Web Tool for the Prediction of Fusarium Head Blight and Deoxynivalenol Content in Belgium, Computers and electronics in agriculture, 93, PP. 140-148.
Liaw, A. & Wiener, M., 2002, Classification and Regression by Random Forest, R News, 2(3), PP. 18-22.
Louppe, G., 2014, Understanding Random Forests: From Theory to Practice, arXiv preprint arXiv:1407.7502, PhD thesis.
McMullen, M., Bergstrom, G., De Wolf, E., Dill-Macky, R., Hershman, D., Shaner, G. & Van Sanford, D., 2012, A Unified Effort to Fight an Enemy of Wheat and Barley: Fusarium Head Blight, Plant Disease, 96(12), PP. 1712-1728.
Moschini, R.C. & Fortugno, C., 1996, Predicting Wheat Head Blight Incidence Using Models Based on Meteorological Factors in Pergamino, Argentina, European Journal of Plant Pathology, 102(3), PP. 211-218.
Moschini, R.C., Pioli, R., Carmona, M. & Sacchi, O., 2001, Empirical Predictions of Wheat Head Blight in the Northern Argentinean Pampas Region, Crop Science, 41(5), PP. 1541-1545.
Musa, T., Hecker, A., Vogelgsang, S. & Forrer, H., 2007, Forecasting of Fusarium Head Blight and Deoxynivalenol content in Winter Wheat with Fusaprog, EPPO bulletin, 37(2), PP. 283-289.
Rossi, V., Giosuè, S., Pattori, E., Spanna, F. & Del Vecchio, A., 2003, A Model Estimating the Risk of Fusarium Head Blight on Wheat, EPPO Bulletin, 33(3), PP. 421-425.
Schaafsma, A. & Hooker, D., 2007, Climatic Models to Predict Occurrence of Fusarium Toxins in Wheat and Maize, International Journal of Food Microbiology, 119(1), PP. 116-125.
Shah, D.A., De Wolf, E.D., Paul, P. & Madden, L., 2014, Predicting Fusarium Head Blight Epidemics with Boosted Regression Trees, Phytopathology, 104(7), PP. 702-714.
Shah, D.A., Molineros, J.E., Paul, P.A., Willyerd, K.T., Madden, L.V. & De Wolf, E.D., 2013, Predicting Fusarium Head Blight Epidemics with Weather-Driven Pre- and Post-Anthesis Logistic Regression Models, Phytopathology, 103(9), PP. 906-919.
Van Der Fels-Klerx, H., Burgers, S. & Booij, C., 2010, Descriptive Modelling to Predict Deoxynivalenol in Winter Wheat in the Netherlands, Food Additives and Contaminants, 27, PP. 636-643.