Ahmadi, S. A. and N. Mehrshad., 2022,
Spectral-spatial feature extraction method for hyperspectral images classification using multiscale superpixel and covariance map, Geocarto International 37(2), pp. 678-695.
https://doi.org/10.1080/10106049.2020.1734874
Anand, R., S. Veni and J. Aravinth., 2021,
Robust classification technique for hyperspectral images based on 3D-discrete wavelet transform, Remote Sensing. 13(7), pp. 1255.
https://doi.org/10.3390/rs13071255
Asghari Beirami, B. and M. Mokhtarzade., 2020,
Spatial-spectral classification of hyperspectral images based on extended morphological profiles and guided filter, Computer and Knowledge Engineering, 2(2), pp. 2-8.
https://doi.org/10.22067/CKE.V2I2.81519
Beirami, B. A. and M. Mokhtarzade., 2017,
SVM classification of hyperspectral images using the combination of spectral bands and Moran's I features, In IEEE 10th Iranian Conference on Machine Vision and Image Processing (MVIP), Isfahan, Iran
https://doi.org/10.1109/IranianMVIP.2017.8342334
Beirami, B. A. and M. Mokhtarzade., 2019, Spatial-Spectral Random Patches Network for Classification of Hyperspectral Images, Traitement du Signal, 36(5), pp. 399-406. https://doi.org/10.18280/ts.360504
Beirami, B. A. and M. Mokhtarzade., 2022, Spatial-spectral classification of hyperspectral images based on multiple fractal-based features, Geocarto International, 37(1), pp. 231-245. https://doi.org/10.1080/10106049.2020.1713232
Benediktsson, J. A., J. A. Palmason and J. R. Sveinsson., 2005,
Classification of hyperspectral data from urban areas based on extended morphological profiles, IEEE Transactions on Geoscience and Remote Sensing
, 43(3), pp. 480-491.
https://doi.org/10.1109/TGRS.2004.842478
Cavallaro, G., M. Dalla Mura, J. A. Benediktsson and L. Bruzzone., 2015,
Extended self-dual attribute profiles for the classification of hyperspectral images, IEEE Geoscience and Remote Sensing Letters, 12(8), pp. 1690-1694.
https://doi.org/10.1109/LGRS.2015.2419629
Duan, P., P. Ghamisi, X. Kang, B. Rasti, S. Li and R. Gloaguen., 2020,
Fusion of dual spatial information for hyperspectral image classification, IEEE Transactions on Geoscience and Remote Sensing, 59(9), pp. 7726-7738.
https://doi.org/10.1109/TGRS.2020.3031928
Falco, N., J. A. Benediktsson and L. Bruzzone,. 2015, Spectral and spatial classification of hyperspectral images based on ICA and reduced morphological attribute profiles, IEEE Transactions on Geoscience and Remote Sensing, 53(11), pp. 6223-6240. https://doi.org/10.1109/TGRS.2015.2436335
Fang, L., N. He, S. Li, A. J. Plaza and J. Plaza., 2018,
A new spatial–spectral feature extraction method for hyperspectral images using local covariance matrix representation, IEEE Transactions on Geoscience and Remote Sensing, 56(6), pp. 3534-3546.
https://doi.org/10.1109/TGRS.2018.2801387
Feng, F., Y. Zhang, J. Zhang and B. Liu., 2022,
Small sample hyperspectral image classification based on cascade fusion of mixed spatial-spectral features and second-order pooling, Remote Sensing, 14(3), pp. 505.
https://doi.org/10.3390/rs14030505
Gomez, C., R. A. V. Rossel and A. B. McBratney, 2008,
Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study, Geoderma, 146(3-4), pp. 403-411.
https://doi.org/10.1016/j.geoderma.2008.06.011
He, N., M. E. Paoletti, J. M. Haut, L. Fang, S. Li, A. Plaza and J. Plaza., 2018,
Feature extraction with multiscale covariance maps for hyperspectral image classification, IEEE Transactions on Geoscience and Remote Sensing, 57(2), pp. 755-769.
https://doi.org/10.1109/TGRS.2018.2860464
Kallas, M., C. Francis, L. Kanaan, D. Merheb, P. Honeine and H. Amoud, 2012,
Multi-class SVM classification combined with kernel PCA feature extraction of ECG signals, In IEEE 19th International Conference on Telecommunications (ICT), Jounieh, Lebanon.
https://doi.org/10.1109/ICTEL.2012.6221261
Kaul, A. and S. Raina., 2022, Support vector machine versus convolutional neural network for hyperspectral image classification: A systematic review, Concurrency and Computation: Practice and Experience, 34(15), pp. e6945. https://doi.org/10.1002/cpe.6945
Kumar, B. and O. Dikshit, 2015,
Integrating spectral and textural features for urban land cover classification with hyperspectral data, In IEEE Joint Urban Remote Sensing Event (JURSE), Lausanne, Switzerland.
https://doi.org/10.1109/JURSE.2015.7120517
Kumar, B. and O. Dikshit., 2015, Spectral–spatial classification of hyperspectral imagery based on moment invariants, IEEE Journal of selected topics in applied earth observations and remote sensing, 8(6), pp. 2457-2463. https://doi.org/10.1109/JSTARS.2015.2446611
Leng, J., T. Li, G. Bai, Q. Dong and H. Dong., 2016,
Cube-CNN-SVM: A novel hyperspectral image classification method, In IEEE 28th International conference on tools with artificial intelligence (ICTAI), San Jose, CA, USA.
https://doi.org/10.1109/ICTAI.2016.0158
Liu, Y., S. Lu, X. Lu, Z. Wang, C. Chen and H. He., 2019,
Classification of urban hyperspectral remote sensing imagery based on optimized spectral angle mapping, Journal of the Indian Society of Remote Sensing,
47, pp. 289-294.
https://doi.org/10.1007/s12524-018-0929-1
Mahdi, M. S. and A. A. A. Hassan., 2016, Satellite images classification in rural areas based on fractal dimension, Journal of Engineering, 22(4), pp. 147-157. https://doi.org/10.31026/j.eng.2016.04.10
Mirzapour, F. and H. Ghassemian., 2015,
Improving hyperspectral image classification by combining spectral, texture, and shape features, International Journal of Remote Sensing, 36(4), pp. 1070-1096.
https://doi.org/10.1080/01431161.2015.1007251
Myint, S., 2003,
Fractal approaches in texture analysis and classification of remotely sensed data: Comparisons with spatial autocorrelation techniques and simple descriptive statistics, International Journal of remote sensing, 24(9), pp. 1925-1947.
https://doi.org/10.1080/01431160210155992
Pang, Y., Y. Yuan and X. Li., 2008,
Gabor-based region covariance matrices for face recognition, IEEE Transactions on circuits and systems for video technology,18(7), pp. 989-993.
https://doi.org/10.1109/TCSVT.2008.924108
Peyghambari, S. and Y. Zhang, 2021,
Hyperspectral remote sensing in lithological mapping, mineral exploration, and environmental geology: an updated review, Journal of Applied Remote Sensing, 15(3), pp. 031501-031501.
https://doi.org/10.1117/1.JRS.15.031501
Qin, H., L. Qin, L. Xue and C. Yu., 2012,
Gabor-based weighted region covariance matrix for face recognition, Electronics letters,
48(16), pp. 992-993.
https://doi.org/10.1049/el.2012.1519
Singh, P., P. C. Pandey, G. P. Petropoulos, A. Pavlides, P. K. Srivastava, N. Koutsias, K. A. K. Deng and Y. Bao., 2020,
Hyperspectral remote sensing in precision agriculture: Present status, challenges, and future trends, Hyperspectral remote sensing: Theory and Applications, Elsevier, ISBN: 978-0-08-102894-0, pp. 121-146.
https://doi.org/10.1016/B978-0-08-102894-0.00009-7.
Sun, Y., Z. Fu and L. Fan., 2019,
A novel hyperspectral image classification pattern using random patches convolution and local covariance, Remote Sensing, 11(16), pp. 1954.
https://doi.org/10.3390/rs11161954
Tuzel, O., F. Porikli and P. Meer., 2006,
Region covariance: A fast descriptor for detection and classification, Computer Vision–ECCV 2006: 9th European Conference on Computer Vision, Graz, Austria, May 7-13, 2006. Proceedings, Part II 9, Springer.
https://doi.org/10.1007/11744047_45
Wang, L., J. Zhang, L. Zhou, C. Tang and W. Li., 2015,
Beyond covariance: Feature representation with nonlinear kernel matrices, Proceedings of the IEEE international conference on computer vision, Santiago, Chile.
https://doi.org/10.1109/ICCV.2015.519
Xu, Y., B. Du, F. Zhang and L. Zhang, 2018, Hyperspectral image classification via a random patches network, ISPRS journal of photogrammetry and remote sensing, 142, pp. 344-357.https://doi.org/10.1016/j.isprsjprs.2018.05.014
Yang, W., J. Peng, W. Sun and Q. Du, 2019,
Log-euclidean kernel-based joint sparse representation for hyperspectral image classification, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(12), pp. 5023-5034.
https://doi.org/10.1109/JSTARS.2019.2952408
Yu, X., Y. Feng, Y. Gao, Y. Jia and S. Mei., 2021, Dual-weighted kernel extreme learning machine for hyperspectral imagery classification, Remote Sensing, 13(3), pp. 508. https://doi.org/10.3390/rs13030508
Zheng, J., Y. Feng, C. Bai and J. Zhang., 2020,
Hyperspectral image classification using mixed convolutions and covariance pooling, IEEE Transactions on Geoscience and Remote Sensing, 59(1), pp. 522-534.
https://doi.org/10.1109/TGRS.2020.2995575
Zhu, J., J. Shi, H. Chu, J. Hu, X. Li and W. Li., 2011, Remote sensing classification using fractal dimensions over a subtropical hilly region, Photogrammetric Engineering & Remote Sensing 77(1), pp. 65-74. https://doi.org/10.14358/PERS.77.1.65