Ahas, R., Aasa, A., Roose, A., Mark, Ü., & Silm, S. (2008). Evaluating passive mobile positioning data for tourism surveys: An Estonian case study.
Tourism Management,
29(3), 469-486.
https://doi.org/https://doi.org/10.1016/j.tourman.2007.05.014
Ahmed, K., Shahid, S., Ismail, T., Nawaz, N., & Wang, X. (2018). Absolute homogeneity assessment of precipitation time series in an arid region of Pakistan.
Atmósfera,
31, 301-316.
https://doi.org/10.20937/ATM.2018.31.03.06
Calabrese, F., Lorenzo, G., Liu, L., & Ratti, C. (2011). Estimating Origin-Destination Flows Using Mobile Phone Location Data.
Pervasive Computing, IEEE,
10, 36-44.
https://doi.org/10.1109/MPRV.2011.41
Dadashpoor, H., & Salarian, F. (2018). Spatial patterns analysis of urban growth in Iran metropolitan regions (Case study: Tehran, Mashhad, Isfahan, and Shiraz metropolitan regions).
Town and Country Planning,
10(1), 117-138.
https://doi.org/10.22059/jtcp.2018.251143.669841
Feng, D., Tu, L., & Sun, Z. (2019). Research on Population Spatiotemporal Aggregation Characteristics of a Small City: A Case Study on Shehong County Based on Baidu Heat Maps.
Sustainability,
11(22).
https://doi.org/10.3390/su11226276
Gao, Y., Cheng, J., Meng, H., & Liu, Y. (2019). Measuring spatio-temporal autocorrelation in time series data of collective human mobility.
Geo-spatial Information Science,
22(3), 166-173.
https://doi.org/10.1080/10095020.2019.1643609
García-Palomares, J., Gutiérrez, J., & Mínguez, C. (2015). Identification of tourist hot spots based on social networks: A comparative analysis of European metropolises using photo-sharing services and GIS.
Applied Geography,
63, 408-417.
https://doi.org/10.1016/j.apgeog.2015.08.002
Ghaed Rahmati, S., & Daneshmandi, N. (2018). Analysis of Urban Tourism Spatial Pattern (Case Study: Urban Tourism Space of Isfahan City) [Article].
Human Geography Research,
50(4 #b00873), 945-961.
https://doi.org/20.1001.1.20086296.1397.50.4.10.9
Ghahramani, M., Zhou, M., & Hon, C. T. (2019). Mobile Phone Data Analysis: A Spatial Exploration Toward Hotspot Detection.
IEEE Transactions on Automation Science and Engineering,
16(1), 351-362.
https://doi.org/10.1109/TASE.2018.2795241
Ghodousi, M., Sadeghi-Niaraki, A., Rabiee, F., & Choi, S.-M. (2020). Spatial-Temporal Analysis of Point Distribution Pattern of Schools Using Spatial Autocorrelation Indices in Bojnourd City.
Sustainability,
12, 7755.
https://doi.org/10.3390/su12187755
Guo, H., Li, W., Yao, F., Wu, J., Zhou, X., Yue, Y., & Yeh, A. G. O. (2020). Who are more exposed to PM2.5 pollution: A mobile phone data approach.
Environment International,
143, 105821.
https://doi.org/https://doi.org/10.1016/j.envint.2020.105821
Hawkes, H. E., & Webb, J. (1962). Geochemistry in Mineral Exploration.
Jiang, S., Ferreira, J., & Gonzalez, M. C. (2017). Activity-Based Human Mobility Patterns Inferred from Mobile Phone Data: A Case Study of Singapore.
IEEE Transactions on Big Data,
3(2), 208-219.
https://doi.org/10.1109/TBDATA.2016.2631141
Kubo, T., Uryu, S., Yamano, H., Tsuge, T., Yamakita, T., & Shirayama, Y. (2020). Mobile phone network data reveal nationwide economic value of coastal tourism under climate change.
Tourism Management,
77, 104010.
https://doi.org/https://doi.org/10.1016/j.tourman.2019.104010
Lee, K.-S., You, S. Y., Eom, J. K., Song, J., & Min, J. H. (2018). Urban spatiotemporal analysis using mobile phone data: Case study of medium- and large-sized Korean cities.
Habitat International,
73, 6-15.
https://doi.org/https://doi.org/10.1016/j.habitatint.2017.12.010
Li, J., Li, J., Yuan, Y., & Li, G. (2019). Spatiotemporal distribution characteristics and mechanism analysis of urban population density: A case of Xi'an, Shaanxi, China.
Cities,
86, 62-70.
https://doi.org/https://doi.org/10.1016/j.cities.2018.12.008
Louail, T., Lenormand, M., Garcia Cantu Ros, O., Picornell, M., Herranz, R., Frias-Martinez, E., Ramasco, J. J., & Barthelemy, M. (2014). From mobile phone data to the spatial structure of cities.
Scientific reports,
4.
https://doi.org/10.1038/srep05276
Marcolini, G., Bellin, A., & Chiogna, G. (2017). Performance of the Standard Normal Homogeneity Test for the homogenization of mean seasonal snow depth time series: PERFORMANCE OF SNHT FOR SNOW DEPTH TIME SERIES.
International Journal of Climatology,
37.
https://doi.org/10.1002/joc.4977
Moya-Gómez, B., Stępniak, M., García-Palomares, J. C., Frías-Martínez, E., & Gutiérrez, J. (2021). Exploring night and day socio-spatial segregation based on mobile phone data: The case of Medellin (Colombia).
Computers, Environment and Urban Systems,
89, 101675.
https://doi.org/https://doi.org/10.1016/j.compenvurbsys.2021.101675
Municipality, S. (2016). Shiraz Statistical Yearbook (Deputy Office for Planning and Human Capital Development at Shiraz Municipality, Issue.
Parwez, M., Rawat, D. B., & Garuba, M. (2017). Big Data Analytics for User Activity Analysis and User Anomaly Detection in Mobile Wireless Network.
IEEE Transactions on Industrial Informatics,
PP, 1-1.
https://doi.org/10.1109/TII.2017.2650206
Pirali, A., & Seyadat, S. (2014). Strategic Planning for the Shiraz City Traffic Management (Using SWOT model).
Traffic Management Studies,
1393(32), 41-66.
https://doi.org/magiran.com/p1336817
Rahman, M., & Neema, M. N. (2015). A GIS Based Integrated Approach to Measure the Spatial Equity of Community Facilities of Bangladesh.
AIMS Geosciences,
1, 21-40.
https://doi.org/10.3934/geosci.2015.1.21
Ratti, C., Pulselli, R., Williams, S., & Frenchman, D. (2006). Mobile Landscapes: Using Location Data from Cell Phones for Urban Analysis.
Environment and Planning B: Planning and Design,
33, 727-748.
https://doi.org/10.1068/b32047
Setavand, H., Hajizadeh, F., & Yaghfoori, H. (2019). Spatial analysis of Shiraz urban areas in terms of social justice with an emphasis on public services [Article].
Journal of Applied researches in Geographical Sciences,
19(52 #g00412), 171-192.
https://doi.org/10.29252/jgs.19.52.171
Tettamanti, T., Demeter, H., & Varga, I. (2012). Route Choice Estimation Based on Cellular Signaling Data. Acta Polytechnica Hungarica, 9.
Tímea, K., Kovács-Székely, I., & Anda, A. (2020). Homogeneity tests and non-parametric analyses of tendencies in precipitation time series in Keszthely, Western Hungary.
Theoretical and Applied Climatology,
139.
https://doi.org/10.1007/s00704-019-03014-4
Wang, J., Cai, J., Yue, X., & Suresh, N. C. (2021). Pre-positioning and real-time disaster response operations: Optimization with mobile phone location data.
Transportation Research Part E: Logistics and Transportation Review,
150, 102344.
https://doi.org/https://doi.org/10.1016/j.tre.2021.102344
Wang, M.-H., Schrock, S., Broek, N., & Mulinazzi, T. (2013). Estimating Dynamic Origin-Destination Data and Travel Demand Using Cell Phone Network Data.
International Journal of Intelligent Transportation Systems Research,
11.
https://doi.org/10.1007/s13177-013-0058-8
Xing, Z., Zhang, X., Zan, X., Xiao, C., Li, B., Han, K., Liu, Z., & Liu, J. (2021). Crowdsourced social media and mobile phone signaling data for disaster impact assessment: A case study of the 8.8 Jiuzhaigou earthquake.
International Journal of Disaster Risk Reduction,
58, 102200.
https://doi.org/https://doi.org/10.1016/j.ijdrr.2021.102200
Yang, X., Fang, Z., Xu, Y., Yin, L., Li, J., & Lu, S. (2019). Spatial heterogeneity in spatial interaction of human movements—Insights from large-scale mobile positioning data.
Journal of Transport Geography,
78, 29-40.
https://doi.org/https://doi.org/10.1016/j.jtrangeo.2019.05.010
Yu, X., Ivey, C., Huang, Z., Gurram, S., Sivaraman, V., Shen, H., Eluru, N., Hasan, S., Henneman, L., Shi, G., Zhang, H., Yu, H., & Zheng, J. (2020). Quantifying the impact of daily mobility on errors in air pollution exposure estimation using mobile phone location data.
Environment International,
141, 105772.
https://doi.org/https://doi.org/10.1016/j.envint.2020.105772