Document Type : علمی - پژوهشی


1 Expert at the Water Resource Research Center, Shahrekord University

2 Associate Professor, Department of Water Engineering, University of Shahrekord


Strategic decisions about the construction of engineering structures along the river which are essential for the management of sediment entering the reservoir will be facilitated by understanding the behavior and characteristics of the sedimentation of rivers leading to large dam reservoirs. Multi-temporal and spectral remote sensing technology has been applicable for detecting of the rivers morphological changes. However, the specific nature of the narrow and shallow rivers is responsible for increasing the complexity of morphology with available data. This study was undertaken in order to detect narrow and shallow rivers by assessing the ability of six famous water indices, including: Normalised Difference Water Index, Modified Normalised Difference Water Index, Automated Water Extraction Index no shadow, Automated Water Extraction Index shadow, Enhanced Water Index and Water Index 2015 which were derived from two Landsat ETM+ and OLI sensors. The optimal threshold for each of these indices was determined using ROC curves and validation process was carried out using Google Earth images captured in August 2013. The accuracy of results was evaluated by using different statistics including combined error, producer’s accuracy, user accuracy and omission and commission errors. Consequently, the results of this study have shown that the ETM+ sensor was generally more accurate than OLI sensor. All in all the Modified Normalised Difference Water Index and the Automated Water Extraction Index shadow was the most accurate indices. Also Automated Water Extraction Index no shadow index had the lowest accuracy for the river’s detecting process


  1. ارشد، ص.، مرید، س.، میرابوالقاسمی، ه.، 1386، بررسی روند تغییرات مورفولوژیکی رودخانه‌ها با استفاده از سنجش از دور: مطالعۀ موردی رودخانۀ کارون از گتوند تا فارسیات (82-1369)، مجلۀ علوم کشاورزی و منابع طبیعی، شمارۀ 14، صص. 194-180.
  2. سیف، ع.، نجمی، ن.، 1392، بارزسازی تغییرات پیچان رودهای کارون با استفاده از تصاویر چندزمانه IRS و Landsat، فصلنامۀ تحقیقات جغرافیایی، شمارۀ 28، صص. 226-211.
  3. علوی‌پناه، س.ک.، 1390، اصول سنجش از دور نوین و تفسیر تصاویر ماهواره‌ای و عکس‌های هوایی، انتشارات دانشگاه تهران.
  4. همراه، م.، 1391، مبانی فتوگرامتری (نقشه‌برداری هوایی)، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران.
  5. Baki, A.B.M. & Gan, T.Y., 2012, Riverbank Migration and Island Dynamics of the Braided Jamuna River of the Ganges–Brahmaputra Basin Using Multi-Temporal Landsat Images, Quaternary International, (263), PP. 148-161.
  6. Barsi, J.A., Lee, K., Kvaran, G., Markham, B.L. & Pedelty, J.A., 2014, The Spectral Response of the Landsat-8 Operational Land Imager, Remote Sensing, (6), PP. 10232-10251.
  7. Chu, Z.X., Sun, X.G., Zhai, S.K. & Xu, K.H., 2006, Changing Pattern of Accretion/Erosion of the Modern Yellow River (Huanghe) Subaerial Delta, China: Based on Remote Sensing Images, Marine Geology, (227), PP. 13-30.
  8. Fawcett, T., 2006, An Introduction to ROC Analysis, Pattern recognition letters, (27), PP. 861-874.
  9. Feng, M., Sexton, J.O., Huang, C., Masek, J.G., Vermote, E.F., Gao, F., Narasimhan, R., Channan, S., Wolfe, R.E. & Townshend, J.R., 2013, Global Surface Reflectance Products from Landsat: Assessment Using Coincident MODIS Observations, Remote Sensing of Environment, (134), PP. 276-293.
  10. Feyisa, G.L., Meilby, H., Fensholt, R. & Proud, S.R., 2014, Automated Water Extraction Index: A New Technique for Surface Water Mapping Using Landsat Imagery, Remote Sensing of Environment, (140), PP. 23-35.
  11. Fisher, A., Flood, N. & Danaher, T., 2016, Comparing Landsat Water Index Methods for Automated Water Classification in Eastern Australia, Remote Sensing of Environment, (175), PP. 167-182.
  12. Flood, N., 2014, Continuity of Reflectance Data between Landsat-7 ETM+ and Landsat-8 OLI, for Both Top-of-Atmosphere and Surface Reflectance: A Study in the Australian Landscape, Remote Sensing, (6), PP. 7952-7970.
  13. Hossain, M.A., Gan, T.Y. & Baki, A.B.M., 2013, Assessing Morphological Changes of the Ganges River Using Satellite Images, Quaternary International, (304), PP. 142-155.
  14. Ji, L., Zhang, L. & Wylie, B., 2009, Analysis of Dynamic Thresholds for the Normalized Difference Water Index, Photogrammetric Engineering & Remote Sensing, (75), PP. 1307-1317.
  15. Jiang, H., Feng, M., Zhu, Y., Lu, N., Huang, J. & Xiao, T., 2014, An Automated Method for Extracting Rivers and Lakes from Landsat Imagery, Remote Sensing, (6), PP. 5067-5089.
  16. Kummu, M., Lu, X.X., Rasphone, A., Sarkkula, J. & Koponen, J., 2008, Riverbank Changes along the Mekong River: Remote Sensing Detection in the Vientiane–Nong Khai Area, Quaternary International, (186), PP. 100-112.
  17. Lillesand, T., Kiefer, R.W. & Chipman, J., 2014, Remote Sensing and Image Interpretation, John Wiley & Sons.
  18. Lu, D. & Weng, Q., 2007, A Survey of Image Classification Methods and Techniques for Improving Classification Performance, International Journal of Remote Sensing, (28), PP. 823-870.
  19. Markham, B.L. & Helder, D.L., 2012, Forty-year Calibrated Record of Earth-Reflected Radiance from Landsat: A Review, Remote Sensing of Environment, (122), PP. 30-40.
  20. McFeeters, S.K., 1996, The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features, International Journal of Remote Sensing, (17), PP. 1425-1432.
  21. NASA, Landsat 7 Science Data Users Handbook, (on-line), available on:, 2006.
  22. Otukei, J.R. & Blaschke, T., 2010, Land Cover Change Assessment Using Decision Trees, Support Vector Machines and Maximum Likelihood Classification Algorithms, International Journal of Applied Earth Observation and Geoinformation, (12), PP. 27-31.
  23. Pardo-Pascual, J.E., Almonacid-Caballer, J., Ruiz, L.A. & Palomar-Vazquez, J., 2012, Automatic Extraction of Shorelines from Landsat TM and ETM+ Multi-Temporal Images with Subpixel Precision, Remote Sensing of Environment, (123), PP. 1-11.
  24. Richards, J.A. & Jia, X., 2006, Remote Sensing Digital Image Analysis, Springer.
  25. Robertson, P.K., 1989, Spatial Transformations for Rapid Scan-Line Surface Shadowing, Computer Graphics and Applications, IEEE, (9), PP. 30-38.
  26. Roy, D.P., Wulder, M.A., Loveland, T.R., Woodcock, C.E., Allen, R.G., Anderson, M.C., Helder, D., Irons, J.R., Johnson, D.M., Kennedy, R. & Scambos, T.A., 2014, Landsat-8: Science and Product Vision for Terrestrial Global Change Research, Remote Sensing of Environment, (145), PP. 154-172.
  27. Rundquist, D.C., Lawson, M.P., Queen, L.P. & Cerveny, R.S., 1987, The Relationship between Summer- Season Rainfall Events and Lake- Surface Area, JAWRA Journal of the American Water Resources Association, (2), PP. 493-508.
  28. Sarkar, A., Garg, R.D. & Sharma, N., 2012, RS-GIS Based Assessment of River Dynamics of Brahmaputra River in India, Journal of Water Resource and Protection, (4), PP. 63-72.
  29. Schumm, S.A., 2007, River Variability and Complexity, Cambridge University Press.
  30. Sharma, N. and Ashagrie, A., 2012. Simulation study for channelization of the brahmaputra river in Assam. Water and Energy International, 69: pp.30-36.
  31. Teillet, P.M., Barker, J.L., Markham, B.L., Irish, R.R., Fedosejevs, G. & Storey, J.C., 2001, Radiometric Cross-Calibration of the Landsat-7 ETM+ and Landsat-5 TM Sensors Based on Tandem Data Sets, Remote Sensing of Environment, (78), PP. 39-54.
  32. Thakur, P.K., 2014, River Bank Erosion Hazard Study of River Ganga, Upstream of Farakka Barrage Using Remote Sensing and GIS. In Our National River Ganga, Springer International Publishing.
  33. Wang, S., Baig, M.H.A., Zhang, L., Jiang, H., Ji, Y., Zhao, H. & Tian, J., 2015, A Simple Enhanced Water Index (EWI) for Percent Surface Water Estimation Using Landsat Data, Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, (8),PP. 90-97.
  34. Xu, H., 2006, Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery, International Journal of Remote Sensing, (27), PP. 3025-3033.