Comparison of Visual and Object-Based Automatic Methods to Identify Landforms in Yazd-Ardakan Basin

Document Type : علمی - پژوهشی

Author

Instructor in Dep. of Geography, Payam Noor University (PNU)

Abstract

Identification of dominant landforms is important in a landscape because they applicable in various types of urban planning, tourism planning, spatial planning, etc. In this study, the landforms of Yazd-Ardakan basin were identified by two visual and automatic methods and then were compared. In automatic method, were used by Multiresolution and Contrast Split image segmentation in the object based concepts for identification of geomorphological landforms. The results showed using “Multiresolution Segmentation” due to consider the shape parameter is appropriate in the recognition of the landforms structure and their natural boundary such as alluvial fan but using the “contrast split image segmentation” is appropriate for micro-landform recognition such as braided river at the surface alluvial fans. The results of the comparison of visual and automated landforms maps showed that the visual approach was only useful for macro-landforms such as mountain masses, types of pediments, Ardakan playa and were barely detectable dunes, But the object based automatic approach not only mentioned landforms but also smaller landforms were identified such as the transverse dunes, alluvial fans, badlands, inselbergs. To evaluate the accuracy of automatic landforms identification models were used both qualitative and quantitative methods; in the qualitative evaluation were used the overlay technique to the visual investigation of matching the map of the model with Google Earth images. The quantitative evaluation was used the confusion matrix. The results of the evaluations showed that Overall Accuracy and Kappa coefficient for the multiresolution algorithm in landforms recognition are 97.46% and 96.53% respectively. Also, Commission and Omission errors showed that the minimum identification errors are related to soft surfaces such as Plain, but the maximum of the identification errors are related to rough surfaces like mountainous. 

Keywords


  1. اختصاصی، م.، احمدی، ح.، فیض‌نیا، س.، بوشه، د.، 1383، فرسایش بادی، رخساره‌ها و خسارات آن در حوضة دشت یزدـ اردکان، مجلة منابع طبیعی ایران، سال 57، شمارة 4، صص. 581-567.
  2. اکبری ا.، شکاری بادی، ع.، 1392، پردازش و استخراج اطلاعات از داده‌های ماهواره‌ای با استفاده از نرم‌افزار ENVI با نمونه‌های کاربردی در علوم زمین، نقشه‌برداری، جغرافیا و محیط‌زیست، انتشارات ماهواره، تهران.
  3. رامشت م.ح.، 1393، نقشه‌های ژئومورفولوژی (نمادها و مجازها)، انتشارات سمت، تهران.
  4. شایان، س.، یمانی، م.، فرج‌زادة اصل، م.، احمدآبادی، ع.، 1391، طبقه‌بندی نظارت‌شدة لندفرم‌های ژئومورفولوژیکی مناطق خشک مرنجاب، سنجش از دور و GIS ایران، سال 4، شمارة 2، صص. 28-19.
  5. علوی‌پناه، س.ک.، 1382، کاربرد سنجش از دور در علوم زمین (علوم خاک)، انتشارات دانشگاه تهران، تهران.
  6. قنواتی ع.، بهشتی جاوید، ا.، 1392، روش‌ها و تکنیک‌های جدید ترسیم نقشه‌های ژئومورفولوژی، انتشارات جهاد دانشگاهی، تهران.
  7. گورابی ا.، کریمی، م.، 1391، روشی جدید در استخراج مخروط‌افکنه‌ها از مدل رقومی ارتفاع، پژوهش‌های ژئومورفولوژی کمی، سال اول، شمارة 3، صص. 89- 10.
  8. محمدی ن.، آل شیخ، ع.، صداقت، ا.، ملک، م.، 1389، روشی جدید در قطعه‌بندی خودکار تصاویر ماهواره‌ای با دقت بالا برای استخراج خطوط ساحلی، مجلة مهندسی دریا، سال 6، شمارة 11، صص. 35-25.
  9. ملامهرعلیزاده، ف.، جنتی، م.، شایان، س.، 1384، کارآیی داده‌های سنجش از دور در تهیة نقشه‌های لندفرم و نقش آن در برنامه‌ریزی محیطی، فصلنامة مدرس علوم انسانی، سال 6، شمارة 4، صص. 148-111.
  10. یمانی م.، مقصودی، م.، 1382، بررسی و تحول کانال‌های گیسویی در سطح مخروط‌افکنهها (مطالعة موردی: مخروط تنگوئیه در سیرجان)، پژوهش‌های جغرافیایی، سال 35، شمارة 45، صص. 133-103.
  11. Argialas, D.P. & Tzotsos, A., 2004, Automatic Extraction of Alluvial Fans from Aster L1 Satellite Data and a Digital Elevation Model Using Object-Oriented Image Analysis, in ISPRS Congress, PP. 1–6.
  12. Asselen, V. & Seijmonsbergen, S., 2006, Expert-Driven Semi-Automated Geomorphological Mapping for a Mountainous Area Using a Laser DTM, Geomorphology, 78, PP. 309–320.
  13. Australian Curriculum, 2008, Oxford Big Ideas Geography, chapter 1: Landforms and Landscapes, Australia, PP.40–53.
  14. Baatz, M. & Schäp, A., 2000, Multiresolution Segmentation: An Optimization Approach for High Quality Multi-Scale Image Segmentation, Heidelberg university, Germany.
  15. Baatz, M., Hoffmann, C. & Willhauck, G., 2008, Progressing from Object-Based to Object-Oriented Image Analysis, available in www.springer.com online with ISBN: 978-3-540-77057-2.
  16. Brabyn, L., 1998, GIS Analysis of Macro Landform, In: Proceedings of the Spatial Information Research Centre’s 10th Colloquium, University of Otago, Dunedin, New Zeeland, PP. 35–48.
  17. Crozier, M.J. & Owen, R.C., 1983, Terrain Evaluation for Rapid Ecological Survey, Physical Geography, University of Victoria, Wellington, New Zealand.
  18. Definiens, A.G., 2006, User Guide for Definiens Professional 5, München, Germany.
  19. Dehn, M., Golger, G. & Dikau R., 2001, Principles of Semantic Modeling of Landform Structures, Computer and Geosicences, 27, PP. 1005–1010.
  20. Dikau, R., Brabb, E.E. & Mark, R.M., 1991, Landform Classification of New Mexico by Computer, U.S. Dept. Interior U.S. Geological Survey, Open-file report, U.S.A.
  21. Dragut, L. & Blaschke, T., 2006, Automated Classification of Landform Elements Using Object-Based Image Analysis, Geomorphology, 81, PP. 330–344.
  22. Dymond, J.R., Derose, R.C. & Harmsworth, G.R., 1995, Automated Mapping of Land Components from Digital Elevation Data, Earth Surface Processes and Landforms, 20, PP. 131–137.
  23. Gerçek, D., 2010, Object-Based Classification of Landforms Based on their Local Geometry and Geomorphometric Context, Ph.D. thesis in GIS, Sup: Dr. Vedat, M.E.T University.
  24. Hammond, E.H., 1954, Small-Scale Continental Landform Maps, Annals of the Association of American Geographers AAG, 44, PP. 34–42
  25. Hammond, E.H., 1964, Analysis of Properties in Land Form Geography: An Application to Broad-Scale Land Form Mapping, Annals of the Association of American Geographers AAG, PP. 11–19.
  26. Haralick, R., Shanmugan, K. & Dinstein, I., 1973, Textural Features for Image Classification, IEEE Transactions on Systems, Man and Cybernetics, 3, PP. 610–621.
  27. Hoffmann, A. & Vander Vegt, J.W., 2001, New Sensor Systems and New Classification Methods: Laser and Digital Camera-Data Meet Object Oriented Strategies, Geo-Information Systems, 6, PP. 18–23.
  28. Jensen, J.R., 1986, Introductory Digital Image Processing, Prentice-Hall, Englewood Cliffs, New Jersey.
  29. Linton, D., 1970, The Assessment of Scenery as a Natural Resource, Scottish Geography Magazine, 84, PP. 219–238.
  30. MacMillan, R.A. & Shary, P.A., 2009, Landforms and Landform Elements in Geomorphometry, Geomorphometry: Concepts, Software, Applications, 33, PP. 227–254.
  31. Martin, K., Schroeder, W. & Lorensen, B., 2012, Reference Book for e-Cognition® Developer 8.7.2, Trimble Germany press, Munich.
  32. Pike, R.J., Evans, I.S. & Hengl, T., 2009, Geomorphometry: A Brief Guide, In: T. Hengl, H.I., Reuter (Eds.), Geomorphometry Concepts, Software, Applications: Developments in Soil Science, Elsevier, Amsterdam, 33, PP. 3–30.
  33. Ranasingh, A., 2008, Multi Scale Segmentation Techniques in Object Oriented Image Analysis, proceeding in ACRS2008, PP. 1–6.
  34. Scofield, G.B, Pantaleão, R.E. & Negri, G., 2015, A Comparison of Accuracy Measures for Remote Sensing Image Classification: Case Study in an Amazonian Region Using Support Vector Machine, International Journal of Image Processing, 9, PP. 11–21.
  35. Stehman, S.V., 1997, Selecting and Interpreting Measures of Thematic Classification Accuracy, Remote Sensing of Environment 62 (1), PP. 77–89.
  36. Wallace, W.H., 1995, New Zealand Landforms, New Zealand Geographer, 11, PP. 17–27.